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Abstract

Hedonic equilibrium models allow researchers to recover willingness to pay for spa-

tially delineated amenities by using the notion that individuals “vote with their feet.” 

However, the hedonic literature and, more recently, the estimable Tiebout sorting model 

literature, have largely ignored both the costs associated with migration (financial and 

psychological), as well as the forward-looking behavior that individuals exercise in mak-

ing location decisions. Each of these omissions could lead to biased estimates of will-

ingness to pay. Building upon dynamic migration models from the labor literature, I 

estimate a fully dynamic model of individual migration at the national level that explic-

itly controls for moving costs and forward-looking behavior. By employing a two-step 

estimation routine, I avoid the computational burden associated with the full recursive 

solution and can then include a richly-specified, realistic state space. With this model, 

I am able to perform non-market valuation exercises and learn about the spatial de-

terminants of labor market outcomes in a dynamic setting. Including dynamics has 

a significant positive impact on the estimates of willingness to pay for air quality. In 

addition, I find that location-specific amenity values can explain important trends in 

observed migration patterns in the United States.

∗Department of Economics, Arizona State University; kelly.bishop@asu.edu. I would like to thank

Chris Timmins, Peter Arcidiacono, Pat Bayer, Marty Smith, and seminar participants at Duke, Claremont

McKenna, Berkeley ARE, Washington University, New York Fed, Maryland AREC, Brown University, SUNY

Albany, Iowa State, University of Michigan, St. Louis Fed, University of Pennsylvania, and Arizona State

University for their helpful comments and suggestions.

1



1 Introduction

Since the seminal theoretical models of Hicks (1932) and Sjaastad (1962), economists have

been interested in examining both the determinants and consequences of individuals’ location

decisions. Individuals choose their location for a variety of reasons, including employment

opportunities and family-related motivations. Importantly, they also care about local public

goods and amenities when making these decisions. This feature of their behavior provides

a basis for the non-market valuation of local attributes using the ideas in Tiebout (1956).1

Complicating such an exercise, however, is the fact that location choice is also an inherently

dynamic decision process. Individuals face high costs associated with moving. We therefore

expect that they would look to the future with regard to wage opportunities and time-varying

location attributes when choosing where to live today. The hedonic and empirical Tiebout

sorting literatures have, however, essentially ignored these complications. In the case of

amenity valuation, ignoring dynamic considerations would bias estimates of willingness to

pay downwards if individuals chose locations with high predicted, but low current levels of

the amenity in question. Similarly, ignoring moving costs would also bias estimates downwards

if individuals had ties, either financial or psychological, to areas with low amenity levels. My

analysis addresses these shortcomings by developing and estimating a fully dynamic model

of national migration and using it to recover individual willingness to pay for air quality.

Importantly, incorporating dynamic behavior results in significantly larger estimates of the

willingness to pay for air quality.

Because of the computational burden associated with the traditional, full-solution method

of dynamic analysis, previous dynamic models of migration have been forced to either limit

the individual to a simple decision of move-stay, which is inappropriate for valuing amenities

that vary spatially, or to essentially ignore the role of local amenity values in migration

altogether. In a model of marital status and family location decisions, Gemici (2011) specifies

the geographic choice set as the nine Census divisions in the United States. At this level of

1Notable papers which incorporate these ideas into hedonic and sorting models include: Rosen (1979),

Roback (1982), Hoehn, Berger, and Blomquist (1987), Blomquist, Berger, and Hoehn (1988), Epple and Sieg

(1999), Sieg, Smith, Banzhaf, and Walsh (2004), Bajari and Kahn (2005), Bayer, McMillan, and Rueben

(2004), and Kuminoff (2012).
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geography, it is impractical to infer preferences for spatially varying amenities. Kennan and

Walker (2011) estimate a model of expected income and individual location decisions, allowing

the choice set to be defined at the finer level of U.S. states. However, the computational

burden of the traditional estimator limits the number and the type of parameters that can be

estimated, particularly as the number of elements in the choice set grows. While including

mean wages (deflated to reflect differences in cost of living), population, and historical averages

of temperature to describe location amenities, Kennan and Walker specify these attributes as

being fixed through time.

I model the location decisions of individuals using panel data from the National Longitudinal

Survey of Youth (NLSY79), explicitly controlling for costs of moving, which are allowed to

vary with a variety of factors, including age. Individuals are forward-looking and choose the

location that maximizes the discounted stream of benefits in expectation. Wages are allowed

to evolve stochastically and the notion of job search is included,2 as individuals learn their

full wage in a given location only after moving there and paying the associated moving costs.

To properly define local attributes, one must move to an even finer level of geography than

the U.S. state. I estimate my model at the level of metropolitan area,3 allowing individuals

to be forward-looking with respect to a rich set of both fixed and time-varying individual

and location attributes. I circumvent the computational burden of the traditional estimation

routine by employing the two-step estimator proposed by Arcidiacono and Miller (2011).4

This method avoids the need for the full recursive solution by estimating the components of

the value function in two stages. This simplifies the main estimating equation to one that is

2Kennan and Walker allow the location-specific match component of earnings to evolve stochastically. I

additionally allow the location-specific mean wage to evolve stochastically, as well as the location-specific cost

of living, proxied by median house prices.
3To avoid issues with sparse data, I limit my analysis to the fifty most populous metropolitan statistical

areas (MSAs) in the NLSY79. I additionally create nine Census division, non-MSA “catch-alls” to limit

attrition from the panel. Thus, the choice set is comprised of fifty-nine locations. With more data describing

migration behavior (see footnote 18), my proposed model could handle a much larger choice set.
4The use of Hotz and Miller-style two-step approaches has become increasing popular, particularly to

estimate dynamic games in Industrial Organization, as they dramatically reduce the computational burden

of these models.See, for example, Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes,

Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008).
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linear in the structural parameters and that can handle a large descriptive state space.

The two-step approach in a migration model uses the fact that individuals optimally choose

where to live and work based on both current and expected future local attributes. Thus, the

probability of choosing a particular location at a given time incorporates the full information

set available that period. Therefore, it is possible to replace the difficult terms within the

future value component of lifetime utility with future conditional choice probabilities. In the

first step of the estimation routine, I flexibly estimate the future probability of choosing a

particular location, conditional on the agent being at any one of the potential points in the

state space. The remaining structural parameters are then estimated in the second stage,

after plugging in the conditional choice probabilities and integrating out over the transitions

of the stochastic variables.

This paper makes several contributions to the literature. While previous dynamic models of

location choice were forced to essentially ignore the role of amenity values, the use of a two-

step approach allows me to include a rich descriptive set of local attributes that are allowed to

transition through time, in addition to location fixed-effects (which control non-parametrically

for all time-invariant local attributes). This extends the existing labor literature of migration

models and allows me to estimate willingness to pay for non-market amenities which vary

spatially. The framework also extends the existing literature on Tiebout sorting models,

which typically ignore the costs associated with migration (both financial and psychological)5

as well as the forward-looking behavior that individuals exercise in making location decisions.

I find that the inclusion of moving costs and forward-looking behavior has a significant impact

on estimates of willingness to pay. I estimate a willingness to pay for a one unit decrease in air

pollution (measured as a one microgram per cubic meter of air decrease in particulate matter)

5An exception is Bayer, Keohane, and Timmins (2009), which allows for moving costs that depend only

on an individual’s birth location, but which ignores other types of dynamics. Deriving a willingness to pay

for air quality using a static Tiebout sorting model, they find that ignoring moving costs substantially under-

estimates the value of clean air.
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of $198.22,6 which implies an elasticity for the average individual of -0.17.7 This willingness

to pay is 2.2 times larger than that estimated by the dynamic model without ties to birth

location and 2.6 times larger than that estimated by a simple static model.8

Finally, the estimated model is used to perform counterfactual simulations of individual migra-

tion decisions. In particular, I analyze the effects of geography and location-specific amenity

values on observed patterns of migration. I simulate behavior under the assumption of uni-

form amenity values across locations and find that the inclusion of amenity values (as opposed

to solely falling wages in declining industries) helps to explain much of the recent migration

out of the North East and to the South and West of the United States.

This paper is organized as follows. I describe my model in Section 2. Sections 3 and 4 discuss

the main data sources and the two-step estimation routine in detail. I present the results in

Section 5. Finally, Section 6 concludes.

2 Model

I model the location decisions of individuals in a finite-horizon framework. In each period,

individuals receive flow utility associated with their current location and incur a moving cost

if they decide to relocate in the following period. Locations will be defined as a set of U.S.

metropolitan areas.

The timing of the decision process is important and highlights the effect of expectations on

the location decision. The decision period will be two years in length.9 An agent begins

period t in a location denoted j. The agent knows the full utility flow associated with their

current location. If they choose to move (i.e. begin period t + 1 in a new location k), they

6The willingness to pay is reported in inflation-adjusted 2000 dollars. For ease of comparison to previous

estimates (see, for example, Chay and Greenstone (2005) and Bayer, Keohane, and Timmins (2009)), which

are expressed in constant 1982-1984 dollars, divide all figures by 1.72.
7The elasticity is calculated at a mean income of $32, 997.26 (in 2000 dollars) and a mean particulate

matter concentration of 27.79 µg/m3.
8See Smith and Huang (1995) for an excellent review of the willingness to pay for air quality literature.
9In my primary data source, the NLSY79, individuals are interviewed biennially.
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pay all associated moving costs (which are known in full) in the current period, t. However,

the individual only has expectations over the value of living in k, which will not be realized

until period t+ 1, after all costs have been paid.

Agents receive flow utility from income, living in the location or region of their birth, the

amenities associated with their current location, and an additively-separable choice-specific

shock. Moving costs are specified as a function of the agent’s age, the distance between the

locations, and whether or not the agent has previously lived in the chosen location. Lifetime

utility is given by current flow utility and the discounted stream of expected future per-period

utilities. Individuals are forward looking with respect to income and time-varying location

attributes. Uncertainty comes in the form of the transition of these variables, a location- and

individual-specific match component of income, and an idiosyncratic shock to utility.

2.1 Income

In each location in each period, an individual receives the location- and time-specific mean

income, a return to their individual characteristics (including age), and an idiosyncratic error

on income. Following Kennan and Walker (2011), I assume that this error term can be divided

into three distinct components: a fixed location-specific match component, an individual fixed

effect, and a transitory component. Thus, the income of individual i, in location j, at time t

is specified as:10

inci,j,t = ω′iγ + f(agei,t) + µj,t + (θi,j + ηi + et)

where ωi is the vector of fixed characteristics of individual i, agei,t is individual i’s age in period

t, and µj,t is the location-specific mean wage at time t. The error term is comprised of the

match component θi,j, the individual fixed effect ηi, and the transitory earnings component

et. All three are assumed to be i.i.d. (across individuals, locations, and time) normally

distributed with mean 0 and respective variances σ2
θ , σ

2
η, and σ2

e .

10In this specification, the return to individual attributes is fixed across locations. In practice, I run the

model on a homogenous sample, so these effects are captured non-parametrically by the location-specific mean

wage. Individual characteristics (besides age, but including education) are held fixed through time.
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Individuals know their individual fixed effect and the current values of their location-specific

match component and time-specific transient component. However, an individual does not

know the value of their match component in other locations or the value of the transient

component in future periods (but does know the distributions from which they are drawn).

I additionally allow individuals to know the value of their match component in their prior

location.11

Income plays an important role in the decision to migrate. However, only the components of

income that vary with location, µi,j,t and θi,j, drive migration decisions. Thus, it is possible

to ignore the other components in the estimation, as they will drop out of utility. While it is

straightforward to include the location- and time-specific mean income, I do not observe the

individual’s match component. Thus, in estimation I employ the signal extraction of Kennan

and Walker.

The signal extraction uses observed wage histories to extract estimates of match components

for each individual in each of their observed locations. The central idea of the extraction

is that the population-wide distributions can be updated for each individual based on their

observed wage histories. For example, if an individual moves and earns an above-average

income in both observed locations, it is possible to increase the estimate of the individual’s

fixed effect (ηi). Likewise, if an individual earns an unexpectedly high income following a

move, it is possible to update the estimates of the respective match components (θi,j).

Isolating the unobserved component of income for each individual in each period and denoting

it Ωi,j(t):

Ωi,j(t) = θi,j(t) + ηi + et

it is possible to estimate the population-wide variances of the error (σ2
θ , σ

2
η, and σ2

e) by taking

sample averages of the elements of the variance-covariance matrix, ΩiΩ
′
i, where Ωi is the

stacked vector of Ωi,j(t).
12

11This introduces “memory” in the form of Kennan and Walker’s limited history approach.
12The sample average of the diagonal elements will yield an estimate of σ2

θ + σ2
η + σ2

e . The sample average

of the off-diagonal elements that correspond to the same location will yield an estimate of σ2
θ + σ2

η. Finally,

the sample average of the off-diagonal elements that correspond to different locations will yield the estimate

of σ2
η, which can be used to separately solve for σ2

θ , σ2
η, and σ2

e .
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Using these population-wide estimates, Kennan and Walker show that it is possible to update

the conditional distribution of the fixed effect for each individual, based on observed income

history Ωi:

(ηi|Ωi) ∼ N(η̂i, σ̂
2
i,η)

where:

η̂i = σ̂2
i,η

[ Λi∑
λ=1

Ωi,λ

ζi,λ

]
, σ̂2

i,η =

[
1

σ2
η

+

Λi∑
λ=1

Ωi,λ

ζi,λ

]−1

, ζi,j = σ2
θ +

σ2
e

Si,j

and where Λi represents the number of locations visited by individual i and Si,j represents

the number of periods that individual i spends in a given location j.

Using the expected value of individual i’s fixed effect by drawing from the above distribution,13

it is possible to generate a conditional distribution of observed location- and individual-specific

match components:

(θi,j|Ωi, E[ηi]) ∼ N(θ̂i,j, σ̂
2
i,θ)

where:

θ̂i,j = σ2
i,θ

[
Ωi,j − E[ηi]

πi,j

]
, σ̂2

i,θ =

[
1

σ2
θ

+
1

πi,j

]−1

, πi,j =
σ2
e

Si,j

I discretize this distribution to the following three points of support, where the points are

fixed over locations, individuals, and time: µj + Φ−1(1
6
), µj, µj − Φ−1(1

6
), where Φ(·) is the

standard normal distribution function.14

Thus, the signal extraction yields a probability that each individual received a “low,” “medium,”

or “high” match component in each of their observed locations. When considering a new lo-

cation, an individual expects to receive one of these draws, each with equal probability in

expectation, based on the chosen points of discretization.

2.2 Moving Costs

In each period, an individual currently located in j chooses a location k from the set of all

locations, J . Based on the timing of the model, individuals receive a utility flow associated

13In practice, I simulate using 1, 000 draws for each individual.
14Discretizing in this fashion is shown to be optimal in Kennan (2004).

8



with their current location j and pay moving costs if their choice of location k is different

from j.

The moving cost (Mi,j,k), depends on the individual’s current location (j), choice location (k),

prior location (l), and age. In addition to having full information about their current location

j, individuals have more information regarding previous locations than locations that they

have never visited. In particular, I allow individuals to know the value of the location- and

individual-specific match component of income in their prior location. This form of “memory”

follows the limited history approach of Kennan and Walker (2011) in allowing individuals to

have more information regarding job prospects in places where they have lived previously.

I specify the moving costs associated with choosing location k while currently living in j as:

Mi,j,k = ψ0 + ψ1distancej,k + ψ2distance
2
j,k − ψ3Ik∈j.reg − ψ4Ik=l + ψ5agei

where ψ0 is a fixed cost of moving, distancej,k is the distance in miles between current location

j and chosen location k, Ik∈j.reg is an indicator equal to one if k is in the same Census division

as j, Ik=l is an indicator equal to one if k is equal to individual i’s prior location l, and agei

is individual i’s current age.

I include both distancej,k and distance2
j,k to allow long-distance moves to be more expensive

than more local moves, but with a decreasing effect. Moves that are within the same Census

division, or return moves to a prior location, are thought to be less costly. Finally, age is

included as it is thought that older individuals (prior to retirement) experience higher costs

of moving than younger individuals.15 Ties to birth location (an implicit form of moving

cost) enter into utility directly, as individuals are expected to continually receive utility while

residing in the location of their birth.

15In practice, I use individuals who are aged 21 to 45.
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2.3 Utility Specification

Net of moving costs, individuals receive utility from income (inci,j,t), living in their birth

location (bi) or birth region, time-varying location attributes (zj,t), fixed observable location

attributes (χj), fixed unobservable location attributes (ξj), and a time-varying idiosyncratic

unobservable location attribute (εi,k,t). Thus, flow utility is given by:

ui,j,k,t + εi,k,t = αincinci,j,t + z′j,tαz + χ′jαχ + ξj

+ αbmsaIj=bi + αbregIregion(j)=region(bi) − Ik 6=jMi,j,k,t + εi,k,t

where moving costs enter with an indicator for whether the individual chooses a location

other than their current location (Ik 6=j). The idiosyncratic component of utility (εi,k,t) and

the unobservable location attribute (ξj) both enter linearly separable.

As the effects of the observable and unobservable fixed location attributes are not separately

identified, I collapse all fixed location attributes into a mean flow utility, or overall quality of

life term, δj, rewriting utility as:

ui,j,k,t + εi,k,t = αincinci,j,t + z′j,tαz + δj

+ αbmsaIj=bi + αbregIregion(j)=region(bi) − Ik 6=jMi,j,k,t + εi,k,t

where δj = χ′jαχ + ξj.

2.4 State Space

The vector of state variables for individual i at time t is denoted xi,t. It describes the state of

the world at time t and is comprised of all individual characteristics and location attributes
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that affect utility. The state vector for a given period t includes the individual’s current,

previous, and birth locations, their age, their current and previous location-specific match

components of income, and the current values of location attributes (observed and unobserved)

for all locations. The decision variable is equal to the individual’s choice at time t and is

denoted di,t. Thus, flow utility can be explicitly written as a function of xi,t and di,t:

ut(xi,t, di,t) + ε(di,t)

I assume that the transition of the state is Markovian, so that xi,t+1 depends on xi,t and di,t

only; no additional information is gained by knowing xi,t−1. The transition probability of the

state vector xi,t is denoted q(xi,t+1|xt, di,t).

Birth location is fixed and, along with time-invariant location attributes, does not transition.

Age, current location, and prior location transition deterministically; in period t+ 1 an agent

is two years older, their current location is given by di,t, and, if di,t necessitates a move, the

period t current location will become the period t+1 prior location. An individual’s location-

specific match component of income evolves stochastically in that the value stays fixed if the

individual does not move, the value reverts to a known value if the individual returns to

their prior location, and, if di,t involves a move to a new location, the individual gets a draw

from the known distribution of match components. Time-varying location attributes evolve

stochastically; individuals have beliefs about the distributions from which future amenity

values will be drawn. I assume rational expectations, so these distributions are the observed

distributions.

The potential size of the state space, or the total number of values state vectors can take on,

is the limiting factor in the traditional, full-solution method of estimation. As the number

of state variables increases, the size of the state space grows exponentially. The full-solution

method, described by Rust (1987), quickly becomes infeasible as the value function needs to

be evaluated at every possible combination of the state variables.16 The two-step estimation

method circumvents this problem.

16In practice, I take 100 draws for each location in each time period for the five continuous variables –

mean wage, crime, housing price, pollution, and population. This implies an approximate state space size of

1.12E+184.
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2.5 Value Functions

In a world with significant costs of migration, rational agents will not be myopic in their loca-

tion decisions. Individuals will consider the future stream of utility associated with choosing a

new location today, as opposed to the behavior described by a static model where individuals

care only about current flow utility. It is possible to write lifetime utility, U(x, ε,d), as the

suitably discounted sum of per-period utilities. Thus, individuals choose a decision rule based

on:

max
d∗=(di,1;...;di,T )

Ed

[
U(x, ε,d)

]
= max

d∗=(di,1;...;di,T )
Ed

[ T∑
t=1

βt−1 ·
(
ut(xi,t, di,t) + ε(di,t)

)]

where β is the discount factor.17

In the lifetime optimization problem current decisions affect both current-period utility and

future-periods’ utility through the current decision’s effect on future states. By assuming (i)

that ε is i.i.d. over time and (ii) that the evolution of the state is Markovian, I am limiting the

patterns of dependence in the dynamic process. These, along with the additive separability of

flow utility, are the basic assumptions of Rust (1987). This allows me to write the following

Bellman equation:

Vt(xi,t, ε(di,t)) = max
di,t∈J

[vt(xi,t, di,t) + ε(di,t)]

where:

vt(xi,t, di,t) = ut(xi,t, di,t) + β

∫ ∑
xi,t+1

Vt+1(xi,t+1, ε(di,t+1)) q(xi,t+1|xi,t, di,t) dF (ε(di,t+1))

An individual receives flow utility this period, ut(xi,t, di,t), based on their current state and

current location decision, as well as the discounted stream of future payoffs associated with

17In practice, I set β to 0.9025, or (0.95)2, to account for the biennial nature of the data.
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that decision, β
∫ ∑
xi,t+1

Vt+1(xi,t+1, ε(di,t+1)) q(xi,t+1|xi,t, di,t) dF (ε(di,t+1)). The precise value of

this future stream is unknown at time t, as xi,t+1 and ε(di,t+1) are only known in expectation.

Assuming that the idiosyncratic error term, ε(di,t), is distributed i.i.d. Type 1 Extreme Value,

β
∫ ∑
xi,t+1

Vt+1(xi,t+1, ε(di,t+1)) q(xi,t+1|xi,t, di,t) dF (ε(di,t+1)) can be replaced with the familiar

Logit inclusive value:

vt(xi,t, di,t) = ut(xi,t, di,t) + β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)

)]
q(xi,t+1|xi,t, di,t)

This is the main estimating equation of the model. The computational burden of the tradi-

tional solution method comes from the recursive nature of this equation; there is a vt on the

left-hand side and vt+1 on the right-hand side. Specifically, there are J number of vt+1 terms

on the right-hand side, which describe the value of choosing any of the J locations in period

t+ 1.

An insight of this paper is that the econometric tools developed in Arcidiacono and Miller

(2011) can be naturally applied to dynamic sorting models. A first stage of estimation involves

estimating conditional choice probabilities as well as transition probabilities. Using these first

stage estimates, the conditional value function can be reduced to an estimating equation

that is linear in the structural parameters and these parameters can be estimated using a

straight-forward Logit procedure. The Appendix provides further details.

3 Data

3.1 Choice Set

As the spatial determinants of national migration decisions are the focus of my research, the

geographic definition of the choice set is critical; if the locations are chosen on too fine a

level, there will be few observed moves to and from each location; however, if the locations
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are chosen on too broad a level (such as states or regions), it becomes impractical to define

spatially varying amenities or to infer preferences for them. In a national model of migration,

metropolitan areas seem to be a natural unit of geography. However, with standard panel

datasets, sparse data becomes an issue when including all 362 recognized metropolitan areas.18

Although my methodology could handle a much larger choice set, I use the 50 largest metropoli-

tan statistical areas (MSAs) in the contiguous United States, as represented in my primary

data source, the National Longitudinal Survey of Youth 1979 (NLSY79).19 To limit attrition

from the panel, I additionally include 9 “catch-all” locations, defined by non-MSA Census

divisions. Thus, the final choice set is comprised of 59 locations. The 50 MSAs represent

approximately 39% of the U.S. population in 2000 and approximately 60% of my NLSY79

sample. The geographic distribution of these locations can be seen in Figure 1.

3.2 Individual Data

The primary dataset I employ is the National Longitudinal Survey of Youth, 1979 panel. This

panel dataset follows over 12,000 individuals aged 14 to 22 in the first round of interviews

in 1979. Beginning in 1994, the Bureau of Labor Statistics switched from an annual to a

biennial interview basis. I use biennial interviews from 1986 to 2004, with individuals aged 21

to 29 in 1986 and 39 to 45 in 2004 (the panel is unbalanced). The restricted-access geocode

supplement of the NLSY79 provides detailed information (county-level) on the individual’s

geographic location, including birth location, in addition to the detailed demographic data

given by the public-access files. I aggregate this county-level data to the level of the MSA, as

defined by the U.S. Census Bureau in 1990.

Following Kennan and Walker, I cut the sample to include a homogenous sample of high school

18In future work, the Longitudinal Employer - Household Dynamic (LEHD) panel dataset, which contains

basic demographic, income, and detailed geographic data for millions of individuals based on Unemployment

Insurance records, could be used to estimate a model with all 362 MSAs.
19While the largest MSAs in the NLSY include the most recognized cities in the U.S. (e.g., New York,

Chicago, Los Angeles), there are a number of smaller cities that contain a large number of NLSY respondents

relative to their size – e.g., Hickory-Morgantown-Lenoir, NC, Lima, OH, Great Falls, MT.
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Figure 1: Metropolitan Areas of the Choice Set

educated white males, with no military or college experience.20 In addition, I drop individuals

who were born outside of the contiguous United States. Finally, I drop observations following

a missed interview by the individual. This leaves me with a final sample of 1,123 individuals

with 7,176 observations and 478 observed moves between locations in the choice set.21

20One may worry that if college attendance rates were changing over the period, differing cohort effects

would limit the homogeneity of the panel. However, national college attendance rates for 25 to 29 year old

white males remained fairly constant over the age-relevant period of 1982 to 1993. Please see the U.S. Health

and Human Services Department report findings at http://aspe.hhs.gov/hsp/97trends/ea1-6.htm for more

detail.
21Although this is a relatively small number of moves compared to static analyses, which use cross-sectional

data, it is more than twice the number of moves observed by Kennan and Walker (213). Future access to

richer panel datasets will increase this number significantly.
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In particular, I use information on individuals’ birth locations and migration decisions, age,

AFQT score,22 and income (defined as the sum of wage and business income).

Summary statistics are given in Table 1 (the sample is comprised of 7,176 person-year obser-

vations with 1,123 distinct individuals).

Table 1: Summary Statistics for the NLSY79 Sample

Variable Obs. Mean Std. Dev.

Age 7176 31.88 5.63

Income (2000 dollars) 7176 32,997.26 22,572.47

Live in MSA of Birth 7176 0.68 0.46

Number of Moves 1123 0.49 0.93

Number of Interviews 1123 7.93 2.18

AFQT 1123 54.08 25.91

Finally, in the estimation of location-specific incomes, I supplement the NLSY79 sample with

a sample of Current Population Survey (CPS) respondents. This sample is also trimmed to

white, high school educated males with no college or military experience. In addition, I trim

to U.S.-born individuals of the relevant age cohort.23

3.3 Location Attributes

As any time-invariant characteristics would be absorbed by the location-specific fixed effect,

δj, I collect a panel of annual time-varying data comprised of crime, median housing price,

air pollution, and population variables for each MSA over the relevant period. I construct

a matrix of distances using the “Great Circle” algorithm24 with geographic coordinate data

taken from the U.S. Census Bureau.

22The Armed Forces Qualifying Test is an general aptitude test given to all respondents of the NLSY79.
23The five MSAs of Fort Pierce-Port St. Lucie, FL, Great Falls, MT, Lima, OH, Victoria, TX, and Wichita

Falls, TX do not have full CPS coverage over the relevant sample period. In these cases, I include individuals

residing within the larger Public Use Microdata Area (PUMA).
24This is also known as the Haversine formula (Sinnott, 1984).
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3.3.1 Crime

The crime data I employ are taken from the Federal Bureau of Investigation’s annual report

entitled “Crime in the United States.” These annual reports include the total reported violent

and property crime incidents,25 as reported by over 17,000 law enforcement agencies across

the United States. These data are given at the city-, MSA-, state-, region-, and national-

level on an annal basis beginning in 1930.

Following Savageau and D’Agostino (2000), I compute a measure of crime that collapses the

violent crimes and property crimes into a single index for each MSA in each year. As it is

assumed that individuals respond to violent crimes more than property crimes, the index

weights violent crimes ten times as heavily. I use a slightly modified version of the index by

calculating it in per-capita terms.26 Specifically, I use:

crimej,t =
violentj,t +

propertyj,t
10

populationj,t

3.3.2 Median House Price

I include a measure of median house price to control for differences in cost of living both across

MSAs and across time periods. Using data from the Office of Federal Housing Enterprise

Oversight’s (OFHEO) Housing Price Index (HPI) and estimates from the National Association

of Realtors, I construct a panel of median house prices. The HPI, which sets 1995 as a base

year for each MSA, reports a weighted, repeat-sales index for single-family homes within each

MSA going back as far as 1975. I translate these appreciation figures into annual median

house prices using a 2004 cross-section of median single-family house prices provided by the

National Association of Realtors. Finally, all prices are converted to 2000 dollars using the

Consumer Price Index.

25Property crimes include burglary, larceny-theft, and motor vehicle theft. Violent crimes include murder,

manslaughter, forcible rape, robbery, and aggrevated assault. As not all reporting agencies collect data on

rape, I omit it from my aggregate measure of violent crime.
26I use the FBI’s measure of population here to ensure a proper per-capita measure.
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3.3.3 Air Pollution

The measure of air pollution I use is the ambient concentration of particulate matter. The

Environmental Protection Agency provides annual emissions figures in their National Emis-

sions Inventory from nearly 6, 000 different sources. The data I use are county-level estimates

of particulate matter concentration (PM10) generated from source data on total particulates

and sulfur dioxide, a PM10 precursor, using the source to county receptor matrix of the Cli-

matological Regional Dispersion Model.27 I compute annual MSA-level pollution estimates

by aggregating the county-level data to the 1990 geographical definition of MSA boundaries.

3.3.4 Population

Finally, I collect annual county-level population estimates from the U.S. Census Bureau.

I compute annual MSA-level population estimates by aggregating the county-level data to

the 1990 geographical definition of MSA boundaries. Thus, this figure captures changes in

population density without the confounding effects of changes to the MSA boundaries.28

Summary statistics of the location attributes are presented in Table 2.

4 Estimation

The computational burden of the model is greatly reduced by the two-step estimation strategy

described in Arcidiacono and Miller (2011). The first step includes all of the estimation

procedures that are performed outside of the dynamic routine. In particular, I estimate

incomes, transition probabilities of the variables that evolve stochastically, and conditional

choice probabilities. In the second step, I estimate the remaining structural parameters of the

utility function, taking the first-stage estimates as given.

27The county-level dataset was created by Nat Keohane who generously provided it.
28The geographic boundaries of some U.S. counties changed over the period of my sample. However, these

changes did not affect the definition of any of the fifty chosen MSAs.
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Table 2: Summary Statistics for the Location Attributes

Variable Obs. Mean Std. Dev.

Crime (per capita) 50 0.0116 0.0046

Median House Price (hundred thousand 2000 dollars) 50 130.55 64.58

Pollution (PM10 in µg/m3) 50 27.79 7.60

Population (millions) 50 2.02 2.19

New England 50 0.07 0.25

Middle Atlantic 50 0.15 0.36

East North Central 50 0.17 0.38

West North Central 50 0.10 0.30

South Atlantic 50 0.15 0.36

East South Central 50 0.05 0.22

West South Central 50 0.12 0.33

Mountain 50 0.07 0.25

Pacific 50 0.12 0.33

4.1 First Step

4.1.1 Income

In the estimation of location-specific mean income levels, I supplement the NLSY79 sample

with data taken from the CPS over the relevant periods, locations, and cohort. Using the

CPS, I regress reported income on a set of age and MSA dummies, yielding estimates of

f(agei,t) and µj,t:

incCPSi,j,t = f(agei,t) + µj,t + εCPSi,j,t

I am then able to take these estimates to the NLSY79 sample, where I regress the deviations

from predicted income on individual characteristics:29

29As the sample is cut to a homogenous sample, I follow Kennan and Walker in using AFQT score as the
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inci,j,t − f̂(agei,t) − µ̂j,t = ω′iγ + (θi,j + ηi + et)

allowing me to isolate the unobserved, idiosyncratic portion of income:

inci,j,t − f̂(agei,t) − µ̂j,t − ω′iγ̂ = θi,j + ηi + et = Ωi,j(t)

I find population-wide estimates of standard deviations for θi,j, ηi, and et to be (in 2000

dollars):30

σ̂η = $7, 073.40

σ̂θ = $15, 499.21

σ̂e = $13, 869.55

and (also in 2000 dollars) the estimated points of support of the distribution of match com-

ponents in each location to be : (µj,t - $8,775.40, µj,t, µj,t + $8,775.40), where µj,t is the mean

income in location j in period t.

4.1.2 Transition Probabilities

Also in the first stage, I estimate the transitions for each of the five stochastic variables of the

model (mean income, crime rate, housing price, pollution level, and annual population) by

assuming AR-1 processes. To maximize use of the data, I pool observations across locations

and regress the current value of these variables on a constant term, the lagged value of the

variable, a set of Census division dummies, and a set of dummies describing the MSA’s quintile

of 1990 population. This yields a set of predicted values for each variable in each period. The

residuals from these regressions are used to define the distributions from which each expected

value is drawn.

sole individual characteristic.
30These estimates imply that approximately 41% of the total variance of earnings can be attributed to the

transitory component of income. This figure is larger than that estimated in Kennan and Walker (33%).

However, both are in line with the previous research of Gottschalk and Moffitt (1994).
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4.1.3 Conditional Choice Probabilities

Finally, the conditional choice probabilities are recovered before proceeding to the dynamic

estimation problem. In an ideal world, a first-stage estimate of these probabilities would be

found using a fully non-parametric method, such as a “bin” estimator, where the probability

of choosing a particular location could be estimated as the fraction of individuals who choose

that location (conditional on being at a particular point in the state space). However, these

probabilities need to be calculated at each and every possible state of the world, with this

number approaching infinity in the current specification. Thus, I estimate a reduced-form

approximation of the conditional choice probabilities, specifying a flexible functional form.

Within the Logit framework, I include a sizeable number of higher-order and interaction

terms, estimating over 40 parameters in addition to a set of location fixed-effects, which enter

linearly.31

4.2 Second Step

The first step yields transitions of the state variables and the conditional probabilities of

choosing any particular location, given any particular state. These estimates are used in the

second-step, where the remaining structural parameters of the specified utility function are

estimated.

Using the insights of Arcidiacono and Miller (described in Section 2.5 and the Appendix), the

second step is estimated as a linear-in-parameters Logit. As the location fixed-effects (the

δ’s) enter linearly, it is possible to employ a Berry (1994) contraction mapping to estimate

them, further limiting the number of parameters over which I need to search in a Maximum

Likelihood routine. The log-likelihood is given by:

L(α, δ) =
N∑
i=1

T∑
t=1

J∑
k=1

log
( exp(vt(xi,t, di,t = k))∑J

j=1 exp(vt(xi,t, di,t = j))

)
· I[di,t=k]

31I estimate the fixed effects using a Berry (1994) contraction mapping inside the maximum likelihood

routine.
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where I[di,t=k] is an indicator equal to one if individual i chooses location k in period t.

The state vector is updated in each period using the estimated transitions from the first

step. In practice, I integrate out over the distributions of the stochastic variables by taking

100 draws from their distributions, which are generated using the residuals from the AR(1)

regressions.

Finally, a willingness to pay for a marginal change in a particular attribute can be easily

calculated as the coefficient on the attribute divided by the coefficient on income, as the

variables enter linearly.32

5 Results

Table 3 reports the parameter estimates from the second-stage dynamic estimation. Income

and housing price are given in tens of thousands of 2000 dollars, population is reported in

millions of individuals, distance is measured in thousands of miles, and pollution is given in
µg/m3

100
. Estimates have the predicted sign and most coefficients are significant at the 5% level.

Estimated moving costs are large, but consistent with Kennan and Walker (2011).33

These results imply a willingness to pay to avoid a one unit (one µg/m3) increase in air

pollution of $198.22 in 2000 dollars. Reported in 1982-1984 dollars, this figure is $114.96.

In a static hedonic analysis, Chay and Greenstone (2005) find a comparable willingness to

pay of approximately $22.00 (also in 1982-1984 dollars). However, their model ignores both

forward-looking behavior and the costs associated with migration. Each of these omissions

32Considering larger changes, one would also need to account for the effects on expected future flow utilities

in the calculation of compensating income variations. In this paper, I focus only on willingness to pay for

marginal changes in air pollution, dealing with large changes in ongoing work.
33The cost of a one-mile move by a twenty-year old individual would be $335, 714.30. The comparable figure

(converted to 2000 dollars) in Kennan and Walker’s analysis is a slightly larger $363, 085.80. As discussed

in Kennan and Walker, one would expect this cost estimate to be large as it captures the cost an individual

would expect to face if forced to move to an arbitrary location in an arbitrary time period. By allowing

an individual to choose the best location, but still conditional on being forced to move in an arbitrary time

period, would reduce costs by $128,211 and is calculated as log(J − 1)/αinc.
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Table 3: Results from Dynamic model

Log Likelihood -3097.1626

Coefficient t-statistic

Moving Cost - Fixed Cost -3.8971 -40.8531

Moving Cost - Distance -1.9565 -11.6354

Moving Cost - Distance2 0.3908 5.1235

Moving Cost - Same Region 0.8588 12.2621

Moving Cost - Age -0.1019 -24.9054

Moving Cost - Last MSA 0.2111 2.0557

Income 0.1408 3.9983

Living in MSA of Birth 0.3550 18.4645

Living in Region of Birth 0.0001 0.0038

Housing Price -0.0337 -0.0056

Crime -0.1853 -0.0389

Pollution -0.2791 -1.9906

Population -1.3334 -2.3551

could lead to downward-biased estimates.

It is interesting to note that the coefficient on crime is not significant; this is not surprising,

as crime is often extremely localized within an MSA and individuals can choose to avoid it

(to a certain degree) based on neighborhood choice. However, this model could be used to

derive a willingness to pay for any time-varying attribute, such as crime, in the same manner

as pollution. The willingness to pay for a fixed attribute could be similarly estimated by

decomposing the location specific fixed effects into observable and unobservable components

via OLS regression:

δj = χ′jαχ + ξj

I am unable to do so in the current application only because of the limitations imposed by

the current choice set size (i.e., J = 59) that results from using NLSY data.
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To further examine the consequences of ignoring either dynamics or psychological ties to

certain locations, I estimate a static specification and a dynamic specification that ignores

ties to birth location using the NLSY79 sample. Results from these specifications are presented

in Tables 4 and 5 respectively.

Table 4: Results from Static model

Log Likelihood -3118.0622

Coefficient t-statistic

Moving Cost - Fixed Cost -1.0863 -28.7229

Moving Cost - Distance -2.0204 -12.0548

Moving Cost - Distance2 0.5622 7.3940

Moving Cost - Same Region 0.6562 9.4096

Moving Cost - Age -0.0927 -20.325

Moving Cost - Last MSA -0.9613 -4.4994

Income 0.3167 5.1757

Living in MSA of Birth 3.0761 84.2343

Living in Region of Birth 0.0023 0.0354

Housing Price -0.0017 -0.2552

Crime -0.9525 -0.1378

Pollution -0.2401 -1.8793

Population -1.9054 -1.5985

In the static specification, agents choose a location based on the current level of attributes.

Thus, the value function is comprised of flow utility and a choice-specific shock only; agents

ignore the continuation value associated with current choice. Note that the static specification

does, however, still allow individuals to have psychological ties to their birth locations.

The results from the static model imply that individuals sort on the basis of both current and

expected future levels of pollution (in particular, choosing locations where pollution levels are

expected to fall). This leads to estimates of willingness to pay that are downward-biased in

the static framework. In particular, this model yields a willingness to pay for air quality that
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is 62% lower than in the dynamic specification.

Finally, it is also interesting to note that in the static model, the sign on “Last MSA” has

flipped; without dynamic concerns, the importance of a prior location to agents is unclear,

as opposed to the dynamic model, where agents consider the possibility of future return

migration.

Table 5: Results from Dynamic model with no ties to Birth Location

Log Likelihood -3127.3720

Coefficient t-statistic

Moving Cost - Fixed Cost -4.1609 -0.6533

Moving Cost - Distance -1.9292 -0.4152

Moving Cost - Distance2 0.3995 0.0298

Moving Cost - Same Region 0.9616 0.2322

Moving Cost - Age -0.1038 0.0066

Moving Cost - Last MSA 0.0020 0.0002

Income 0.3781 0.0041

Housing Price -0.0337 -0.0056

Crime 0.7036 3.3274

Pollution -0.3355 -0.1188

Population -4.8837 -2.6464

In the next specification, agents are both forward-looking and experience costs associated

with migration in the traditional sense (i.e., there is a fixed cost moving and costs increase

with age and distance between locations). However, often over-looked are the emotional ties

to one’s “home,” or birth location. This specification ignores individual’s preference for living

in the MSA or region of their birth. Bayer, Keohane, and Timmins (2009) show using 2000

Census data, that more than sixty percent of household heads are currently living in the

Census division of their birth, with a higher number for high-school graduates, such as those

used in this application.

If individuals have ties to locations with relatively high levels of pollution because of birth,
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a näıve model that ignores these ties would, by omission, interpret them as a preference for

birth location attributes. This would lead estimates of willingness to pay for air quality to be

biased downwards. There is a positive correlation between birth location and pollution (the

correlation coefficient is 0.22, measured in the first year of my panel, 1986), implying that

this source of bias may be a concern.

The results presented in Table 5 imply that individuals have ties to birth locations with

relatively worsening air quality, as identification comes off of variation through time. These

willingness to pay results are again substantially lower than in the base model; $52.21 versus

$114.96 in 1982-1984 dollars. In addition, the omission of these ties leads many of the other

coefficients to take on the wrong signs.

The goal of the preceding exercise was to illustrate the important role played by dynamics

(both costly migration and forward-looking behavior) in non-market valuation. In addition,

since I have recovered the parameters of the utility function that determine migration behav-

ior, I can also use the estimated model to perform counterfactual simulations of individual

migration decisions. Of particular interest is the role of amenities in the migration patterns

observed over the last twenty years in the United States. Isolating the relative weights on

income prospects and on non-pecuniary amenity values in migration trends, simulations show

that amenities play a significant role (as opposed to falling wages in declining industries alone)

in the recent flows out of Northeast and Midwest and into the South, Southwest, and West

of the United States. Driving this finding is the result that income and amenity values are

positively correlated in metropolitan areas.

In addition, these simulations can be used to examine the ex post distributions of the

individual- and location-specific match components of income. Following the basic insights

of Roy (1951), observed income distributions will have higher means than offered income dis-

tributions, as individuals choose locations that offer the highest wages. Although I capture

only the partial equilibrium effects while holding location-specific mean incomes fixed, results

show that the ex post distribution of location- and individual-specific match components has

both a larger mean and a larger variance in the counterfactual world in which amenities do

not enter utility. This implies that inter-location convergence of incomes could be in part

explained by geographic differences in amenities.
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6 Conclusion

In this paper, I estimate a dynamic model of location choice where the choice set is defined at

the level of the metropolitan area. I employ the two-step, Hotz and Miller -style estimation

routine developed in Arcidiacono and Miller (2011), which permits me to include a rich

descriptive set of local attributes, including a set of location fixed effects. The inclusion of

these amenity values not only allows for a more realistic specification of individual utility, but

also allows for the use of a dynamic migration model in a non-market valuation exercise.

In the first step of the estimation routine, I flexibly estimate conditional choice probabilities,

transition probabilities of the state variables, and individual incomes. In the second step, I

estimate the structural parameters of individuals’ utility functions. The overall computational

burden of the estimator is low, with the second step estimated as a linear-in-parameters Logit.

I estimate the model using a homogenous sample of white, high-school educated males from

the NLSY79 panel, over the period 1986 to 2004.

My particular application recovers the willingness to pay for clean air. Using a panel of

annual air pollution data for each metropolitan area, I find the willingness to pay (in 2000

dollars) to be $198.22 for a one unit decrease in annual pollution (a one µg/m3 decrease in

particulate matter). When calculated at mean income and mean pollution, this corresponds

to a willingness to pay elasticity with respect to air quality of approximately 0.17. I find

evidence of a downward bias in estimates produced using either a static sorting model or a

dynamic model that ignores the emotional ties to individuals’ birth locations. This indicates

that individuals are both forward-looking with respect to location amenities and have ties to

relatively polluted areas.
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Appendix – Model and Estimation Details

Beginning with the value function:

vt(xi,t, di,t) = ut(xi,t, di,t) + β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)

)]
q(xi,t+1|xi,t, di,t)

it is possible to multiply and divide the inclusive value term by the value of choosing a

particular location h in period t+ 1, given that di,t = k:

vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)

)exp(vt+1(xi,t+1, di,t+1 = h)

)
exp

(
vt+1(xi,t+1, di,t+1 = h)

)]q(xi,t+1|xi,t, di,t = k)

Separating out the exp

(
vt+1(xi,t+1, di,t+1 = h)

)
in the numerator and dividing through by

the

exp

(
vt+1(xi,t+1, di,t+1 = h)

)
in the denominator yields:

vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+ β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)− vt+1(xi,t+1, di,t+1 = h)

)]
q(xi,t+1|xi,t, di,t = k)

+ β
∑
xi,t+1

[
vt+1(xi,t+1, di,t+1 = h)

]
q(i, xt+1|xi,t, di,t = k)

The third right-hand side term in the above equation,

β
∑
xi,t+1

[
vt+1(xi,t+1, di,t+1 = h)

]
q(xi,t+1|xi,t, di,t = k) ,

or the expected value of choosing location h in period t + 1, can be written as the sum of

a period t + 1 flow utility and the associated continuation value. Similar to the previous
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normalization, it is possible to normalize this continuation value relative to choosing some

location g in period t+ 2:

vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+ β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)− vt+1(xi,t+1, di,t+1 = h)

)]
q(xi,t+1|xi,t, di,t = k)

+ β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

ln

[ J∑
j=1

exp

(
vt+2(xi,t+2, di,t+2 = j)− vt+2(xi,t+2, di,t+2 = g)

)]
·q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

[
vt+2(xi,t+2, di,t+2 = g)

]
q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

Finally, it is possible to again expand the final right-hand side value function into a flow utility

and a continuation value, and normalize the continuation value by the value of choosing some

location m in period t+ 3:
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vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+ β
∑
xi,t+1

ln

[ J∑
j=1

exp

(
vt+1(xi,t+1, di,t+1 = j)− vt+1(xi,t+1, di,t+1 = h)

)]
q(xi,t+1|xi,t, di,t = k)

+ β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

ln

[ J∑
j=1

exp

(
vt+2(xi,t+2, di,t+2 = j)− vt+2(xi,t+2, di,t+2 = g)

)]
·q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

[
ut+2(xi,t+2, di,t+2 = g)

]
·q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

ln

[ J∑
j=1

exp

(
vt+3(xi,t+3, di,t+3 = j)− vt+3(xi,t+3, di,t+3 = m)

)]
·q(xi,t+3|xi,t+2, di,t+2 = g)q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

[
vt+3(xi,t+3, di,t+3 = m)

]
·q(xi,t+3|xi,t+2, di,t+2 = g)q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

While these expansions appear to have complicated the estimation equation, they actually al-

low for an important simplification. Consider the probability of choosing a particular location

c in a given time τ . Given the Logit framework, this probability can be written as:

Pr(di,τ = c|xi,τ ) =

exp

(
vτ (xi,τ , di,τ = c)

)
J∑
j=1

exp

(
vτ (xi,τ , di,τ = j)

)
=

1
J∑
j=1

exp

(
vτ (xi,τ , di,τ = j)− vτ (xi,τ , di,τ = c)

)
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or as:

Pr(di,τ = c|xi,τ )−1 =
J∑
j=1

exp

(
vτ (xi,τ , di,τ = j)− vτ (xi,τ , di,τ = c)

)

The right-hand side of the above equation is equivalent to the right-hand side normalized

continuation values in the choice-specific value function. Thus, it is possible to write the

choice-specific value function as:

vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+ β
∑
xi,t+1

ln

[
Pr(di,t+1 = h|xi,t+1)−1

]
q(xi,t+1|xi,t, di,t = k)

+ β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

ln

[
Pr(di,t+2 = g|xi,t+2)−1

]
·q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

[
ut+2(xi,t+2, di,t+2 = g)

]
·q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

ln

[
Pr(di,t+3 = m|xi,t+3)−1

]
·q(xi,t+3|xi,t+2, di,t+2 = g)q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

[
vt+3(xi,t+3, di,t+3 = m)

]
·q(xi,t+3|xi,t+2, di,t+2 = g)q(xi,t+2|xi,t+1, di,t+1 = h)q(xi,t+1|xi,t, di,t = k)

These future conditional choice probabilities, Pr(di,t|xi,t), are estimated in a separate first-

step. They can therefore be thought of as data in the above equation and replaced by
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P̂ r(di,t|xi,t). The transition probabilities, q(xi,t+1|xi,t, di,t), can be similarly recovered in a

preliminary procedure and replaced by q̂(xi,t+1|xi,t, di,t):

vt(xi,t, di,t = k) = ut(xi,t, di,t = k)

+ β
∑
xi,t+1

ln

[
P̂ r(di,t+1 = h|xi,t+1)−1

]
q̂(xi,t+1|xi,t, di,t = k)

+ β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q̂(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

ln

[
P̂ r(di,t+2 = g|xi,t+2)−1

]
·q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

+ β2
∑
xi,t+1

∑
xi,t+2

[
ut+2(xi,t+2, di,t+2 = g)

]
q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

ln

[
P̂ r(di,t+3 = m|xi,t+3)−1

]
·q̂(xi,t+3|xi,t+2, di,t+2 = g)q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

+ β3
∑
xi,t+1

∑
xi,t+2

∑
xi,t+3

[
vt+3(xi,t+3, di,t+3 = m)

]
·q̂(xi,t+3|xi,t+2, di,t+2 = g)q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

Now, the main estimating equation has been re-written to eliminate J − 1 of the original J

right-hand side value functions. Exploiting the “finite dependence” simplification of Arcidia-

cono and Miller will eliminate the remaining one. Before describing this final step, however,

it is useful to consider the economic meaning of the remaining right-hand side value function

(vt+3(xi,t+3, di,t+3 = m)) – i.e., the value of choosing location m in period t + 3, when the

individual’s current (t + 2 choice) location is g and prior (t + 1 choice) location is h. The

fact that the agent chose location k in period t does not affect the period t + 3 decision, as

“memory” only extends to the prior location. In this case, the dependence on initial choice

can be broken after two periods, while in a model with no “memory,” dependence could be
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broken after only one period.34

Using the fact that the location parameter in a Logit model is not identified, i.e., that only

relative values matter, it is possible to difference the above value function with respect to the

value function associated with another choice (i.e., estimate (vt(xi,t, di,t = k) − vt(xi,t, di,t =

c)), where the future component of vt(xi,t, di,t = c) has been expanded in the manner just

described). With dependence on initial choice broken, the final right-hand side term has the

same value in both cases. In addition, as the value of choosing and particular location in

period t + 3 is independent of the period t choice, the probability of choosing a particular

location m in period t+3 is also independent of the period t choice. Thus, the final two right-

hand side terms will drop out when differenced. In general, the model must be expanded to

one period further than “memory” allows; if an agent can “remember” current location and

prior location, the value function must be extended three periods, as above.

The estimating equation therefore becomes:

34This would allow the methodology to be used on publicly available IPUMS data, which provides informa-

tion on the individual’s birth location and two other observed locations (e.g., location in 1995 and in 2000).

The latter information can be used to model one migration decision. The current specification requires data

on birth location and at least three other observed locations, or two migration decisions.
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vt(xi,t, di,t = k)− vt(xi,t, di,t = c) = ut(xi,t, di,t = k)− ut(xi,t, di,t = c)

+ β
∑
xi,t+1

ln

[
P̂ r(di,t+1 = h|xi,t+1)−1

]
q̂(xi,t+1|xi,t, di,t = k)

− β
∑
xi,t+1

ln

[
P̂ r(di,t+1 = h|xi,t+1)−1

]
q̂(xi,t+1|xi,t, di,t = c)

+ β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q̂(xi,t+1|xi,t, di,t = k)

− β
∑
xi,t+1

[
ut+1(xi,t+1, di,t+1 = h)

]
q̂(xi,t+1|xi,t, di,t = c)

+ β2
∑
xi,t+1

∑
xi,t+2

ln

[
P̂ r(di,t+2 = g|xi,t+2)−1

]
q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

− β2
∑
xi,t+1

∑
xi,t+2

ln

[
P̂ r(di,t+2 = g|xi,t+2)−1

]
q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = c)

+ β2
∑
xi,t+1

∑
xi,t+2

[
ut+2(xi,t+2, di,t+2 = g)

]
q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = k)

− β2
∑
xi,t+1

∑
xi,t+2

[
ut+2(xi,t+2, di,t+2 = g)

]
q̂(xi,t+2|xi,t+1, di,t+1 = h)q̂(xi,t+1|xi,t, di,t = c)

While it is still quite complicated, note that this equation is linear in the structural parameters.

These parameters can therefore be estimated using a straight-forward Logit procedure without

recursion, after integrating out over the transition of the state.
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