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Abstract: The hedonics literature has often asserted that if one were able to observe
the same individual make multiple purchase decisions, one could recover rich esti-
mates of preference heterogeneity for a given amenity. In particular, in the face of a
changing price schedule, observing each individual twice is sufficient to recover a linear
demand function separately for each individual, with no additional restrictions. Con-
structing a rich panel data set of buyers, we recover the full distribution of demand
functions for clean air in the Bay Area of California. First, we find that estimating
the full demand function, rather than simply recovering a local estimate of marginal
willingness to pay, is important. Second, we find evidence of considerable heterogene-
ity, which is important from a policy perspective; our data-driven estimates of the wel-
fare effects associated with a nonmarginal change in air quality differ substantially
from those recovered using the existing approaches to welfare estimation.
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MANY APPLICATIONS OF THE HEDONIC MODEL seek to value nonmarginal changes
in amenities, requiring the estimation of the underlying hedonic demand or marginal
willingness-to-pay (MWTP) function. This, however, is not without costs as assump-
tions are typically needed that restrict preference heterogeneity. In this paper, we show
how to recover the unconditional distribution of linear MWTP functions with a simple
and transparent data-driven estimation approach.
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The traditional estimation approach for recovering hedonic demand is based on
Rosen’s seminal 1974 paper. However, the second stage of Rosen’s two-step approach
suffers from a number of econometric problems; of particular concern is that when the
hedonic price function is nonlinear in the amenity of interest, buyers simultaneously
choose both the hedonic price and the quantity of that amenity that they will con-
sume. Therefore, the problem of consumer choice subject to a nonlinear budget con-
straint creates a difficult endogeneity problem when using statistical inference to re-
cover the parameters describing those preferences.1 Typically, instrumental-variable
approaches in this literature have relied upon questionable exclusion restrictions;
for example, certain sociodemographic variables enter directly into the MWTP func-
tion while others do not and the excluded variables can be used as instruments for
endogenous attribute levels. These assumptions are not testable and place arbitrary
restrictions on the estimated heterogeneity in MWTP and, aside from market dum-
mies, these instruments are generally hard to justify. These difficulties have led most
researchers to forgo estimating the MWTP function altogether, employing only local
measures of MWTP in policy analysis.

In a 2005 paper, Bajari and Benkard demonstrate that this endogeneity problem
may be avoided by replacing the statistical inference used in the second stage of
Rosen’s method with a “preference inversion” procedure that inverts the first-order
conditions of utility maximization to recover demand at the individual level. The
strengths of this approach lie in (i) its admission of any form of preference heteroge-
neity and (ii) its avoidance of the endogeneity problems described above. Its primary
weakness, however, comes in the strict functional-form assumptions that are required
to perform the inversion procedure, that is, when observing each individual on only
one purchase occasion (one data point), it is only possible to recover the MWTP func-
tion by fully assuming its shape.When the shape of theMWTP function is so strongly
dictated by functional-form assumptions, the value in going beyond the first stage of
Rosen’s two-step procedure is limited. Bajari and Benkard recognize this, pointing out
that these assumptions could be relaxed if the researcher were able to observe the same
individual buyer on multiple purchase occasions.

Our method for recovering the MWTP function is quite intuitive: observing the
exact same household make purchase decisions in multiple geographic markets or
1. See Brown and Rosen (1982), Mendelsohn (1985), Bartik (1987), and Epple (1987) for
discussions about issues relating to the identification and estimation of the MWTP function.
More recently, Ekeland et al. (2004) clearly demonstrate the conditions under which the
MWTP function is identified. Bishop and Timmins (2018) build upon the insights of Ekeland
et al. to illustrate how estimating the MWTP function can be relatively straightforward. How-
ever, in both cases, restrictions on the heterogeneity of preferences are required. Banzhaf (2015)
shows that by assuming a single-crossing condition, a first-order approximation to the MWTP
function can be obtained.
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in multiple time periods (i.e., under different price schedules) allows us to trace out
household-specific hedonic demand functions. Given a graphical representation of
the problem, our empirical approach becomes clear; observing each household on at
least two purchase occasions allows us to “connect the dots” and recover a unique (lin-
ear) MWTP curve for each household in the data set. Figure 1 describes this approach
for a given amenity, Z; when facing the associated (implicit) price schedules on pur-
chase occasions 1 and 2, household i chooses to consume Z＊

i,1 and Z＊
i,2, respectively.

These two observations are sufficient for recovering a household-specific linear
MWTP function for household i.

Importantly, the intuition behind our identification is straightforward. The sched-
ule of market prices (i.e., the hedonic price gradient) exhibits exogenous variation
across time from the point of view of any given household, as we assume that house-
holds are price takers in the real estate market. Thus, we are observing each individual
household choosing how much of amenity Z to consume under different supply con-
ditions, allowing us to trace out the MWTP function for each household in the data.
Naturally, the MWTP function that we recover with exactly two observed purchases
is linear. We impose no additional restrictions on the shape of MWTP and, in par-
ticular, no restrictions on the heterogeneity of the individual-specific coefficients for
intercept and slope. Additionally, we show how these preference coefficients may
be decomposed to isolate the effect of fixed demographic characteristics, such as race.
While we recover a linear MWTP with two observations per household, we show
that with three or more observations for each household, we can estimate the effect
of time-varying demographic characteristics, such as income. With three or more ob-
servations per household, we could alternatively allow for greater flexibility in the
Figure 1. Recovering hedonic demand functions using panel data
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shape of the MWTP curve, such as allowing the function to be quadratic in Z or al-
lowing nonseparability between Z and other housing characteristics.

We apply this methodology to recovering individual-specific MWTP functions for
air quality in the Bay Area of California. In particular, we estimate the marginal will-
ingness to pay to avoid ground-level ozone pollution. For this analysis, we create a rich
panel data set describing real estate transactions and the attributes of the associated
buyers over the 13-year period 1991–2003. To create this data set, we first isolate
and match individual households over time and then merge the demographic charac-
teristics provided on mortgage applications from the Home Mortgage Disclosure Act
of 1975. Finally, we generate a house-level annual measure of ozone pollution from the
monitor data provided by the California Air Resources Board. In particular, our mea-
sure of ozone is number of days exceeding the state of California’s maximum 1-hour
ozone concentration.

In the implementation of this approach, we allow for the most flexible representa-
tion of preferences possible with the available data. We begin by estimating a nonpara-
metric regression to recover a flexible set of time-varying hedonic price gradients which
includes house-level fixed effects. In the second stage, we estimate household-specific,
linear MWTP curves.

As we estimate MWTP functions (versus the local measure only), we can calculate
the elasticity of the MWTP with respect to ozone exposure. We find that the median
value of this elasticity is 0.69, implying that it is important to recover the entire func-
tion when considering nonmarginal changes. We also find considerable heterogeneity
across households in the MWTP to pay to avoid ozone pollution with an interquartile
range of 0.89 in this elasticity.

Correctly estimating heterogeneity in the slope of the MWTP function is impor-
tant from a policy perspective as the policy maker must account for the fact that those
who are exposed to larger policy-induced changes in amenities may be those who are
more (or less) sensitive to the change, compared with the average household. In other
words, do the households exposed to the largest changes have the steeper or flatter
MWTP functions? This question is particularly important given that households likely
sort based on their preferences for ozone.

To illustrate this concept, we estimate the annual welfare costs associated with a
nonmarginal increase in ozone. We find that the mean willingness to pay to avoid a
33% increase in ozone is $1,021, the median is $770, and the interquartile range is
$1,106. We compare our results with a specification that allows for heterogeneity
in MWTP intercepts but eliminates heterogeneity in MWTP slopes by assuming
all households have flat (i.e., perfectly elastic) MWTP functions. Using these flat
MWTP functions returns the expected result of smaller mean annual welfare costs:
the mean cost is $848 and the median cost is $636. We then compare our results with
a specification where the slope is identified by the functional form of the utility func-
tion, as in Bajari and Benkard (2005). In this case, the estimated annual welfare costs
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are very close to the model with flat MWTP functions: the mean is $909 and the me-
dian is $652. Furthermore, the functional-form based approach used here recovers a
counterintuitive negative correlation between ozone exposure and the slope of the
MWTP function; the steepest MWTP curves are assigned to those households that
are exposed to the highest amount of ozone. In contrast, when we use panel data and
households’ observed changes in ozone exposure (in response to observed changes in
price) to recover the slope of the MWTP curve, we obtain a positive correlation be-
tween ozone exposure and the slope of the MWTP function.

This paper proceeds as follows. Section 1 describes our methodological approach
for recovering the hedonic demand for air quality in the Bay Area of California. The
creation of our unique two-sided panel data set and its summary statistics are dis-
cussed in section 2. Section 3 presents our results, and section 4 applies our MWTP-
function results tomeasure the willingness to pay to avoid a nonmarginal change in ozone
levels. Finally, section 5 concludes.
1. MODEL

In this section, we describe our panel-data-driven approach to recovering the struc-
tural parameters of the hedonic model. First, we discuss the nonparametric, repeat-
sales model that we use to recover the hedonic gradient with respect to a particular
amenity. While this approach allows for the fewest assumptions and still controls for
house-level fixed effects, a simpler specification would also be sufficient for the identifi-
cation of the second stage.We then show that with access to a panel of buyers (and im-
plicit prices from the first stage), we can recover fully heterogeneous MWTP functions
by observing households in at least two different time periods.
1.1. A Nonparametric Fixed-Effects Approach to Recovering

the Hedonic Gradient

In the first stage of the model, we estimate the hedonic price function, Pj,t which re-
lates the price of house j transacted in period t to its attributes: both those that vary
over time, Zj,t, and those that do not, Xj. The elements of Xj may be observed or un-
observed. The gradient may be estimated in any number of ways, although a simple,
linear framework may impose unrealistic restrictions on the equilibrium underlying
the hedonic price function.2 Additionally, concern must be paid to the potential bias
caused by omitted variables. Using panel data with repeat sales and controlling for
house fixed effects avoids the bias caused by time-invariant house characteristics,
whether observed or unobserved.
2. See Ekeland et al. (2004) for a discussion of the shape of equilibrium hedonic price func-
tions.
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Following Fan and Gijbels (1996) and Lee and Mukherjee (2014), we adopt a
nonparametric first-difference approach for the estimation of the gradient and begin
by writing down a flexible representation of the hedonic price function:3

Pj,t 5 f Zj,t
� �

1 X0
jv 1 nj,t, (1)

where f(·) is an unspecified, flexible function of time-varying attributes of house j (or
its neighborhood) and Xj represents all time-invariant attributes (whether they are ob-
served by the econometrician or not). While we allow Zj,t to be correlated with the
(potentially unobservable) elements of Xj, we assume that Zj,t is uncorrelated with
the time-varying error term, vj,t. We allow vj,t to be correlated with Xj. In our appli-
cation, Zj,t will consist of (i) a measure of ground-level ozone pollution at house j in
year t and (ii) the year of the housing transaction.

In a series of Monte Carlo experiments, Kuminoff et al. (2010) show that including
spatial fixed effects is the preferred way to deal with (potentially correlated) unobserv-
ables at the neighborhood level. Here, as we have repeat-sales data, we are controlling
for these unobservables at the level of the house.

We take a first-order Taylor series expansion of f (·) around a vector z, which has
the same dimension as Zj,t.

4

Pj,t 5 f zð Þ 1 Zj,t – z
� �0

f 0 zð Þ 1 X0
jv 1 nj,t: (2)

We denote each property’s year of prior sale by t–1 and rewrite equation (2) for this
prior sale:5

Pj,t–1 5 f zð Þ 1 Zj,t–1 – z
� �0

f 0 zð Þ 1 X0
jv 1 nj,t–1 : (3)

This allows us to subtract equation (3) from equation (2) and difference out both the
time-invariant attributes, Xj, and the time-invariant term, f (z).6

Pj,t – Pj,t–1 5 Zj,t – Zj,t–1

� �0
f 0 zð Þ 1 nj,t – nj,t–1

� �
: (4)

Denoting first differences with “~” and replacing f 0(�) with β(·), we arrive at:

~Pj,t 5 ~Z0
j,tβ zð Þ 1 ~nj,t: (5)
3. Bajari and Kahn (2005) apply a similar framework, but without the first differencing. See
also Clapp (2003), Parmeter et al. (2007), and Heckman et al. (2010) for discussions of non-
parametric hedonic price function estimation.

4. The remainder term associated with the Taylor expansion is ignored.
5. This is expanded around the same vector z.
6. Losing f (·) from this expression does not pose a problem, as our interest is only in recov-

ering the hedonic gradient, that is, the slope of the hedonic price function, which is represented
nonparametrically by f 0(�).
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Lee andMukherjee (2014) show that β(z) (i.e., the slope of the hedonic price function
atZj,t 5 z) may be recovered using the following least-squares minimization procedure:

β zð Þ 5 arg min
β zð Þo

J

j51
o
Tj

t51

~Pj,t – ~Z0
j,tβ zð Þ� �2

Kh Zj,t – z
� �

Kh Zj,t–1 – z
� �

, (6)

where Tj denotes the number of first-differenced observations for each house j. Imple-
menting the local-linear regression procedure requires choosing the weights placed on
data as one moves further from the point of evaluation, z. For our estimation, Kh(·) is
given by the Gaussian kernel:

Kh Zj,t – z
� �

5
Y
k

1
hĵZk

1ffiffiffiffiffiffi
2p

p exp –
1
2

Zk,j,t – zk
hĵZk

� �2
( )

, (7)

where h represents the kernel bandwidth and ĵZk is the standard deviation of the kth
element of Zj,t.

In practice, this allows us to recover an estimate of β(z) for all observed values of
Zj,t. We therefore end up with a (potentially) different estimate of β(z) at each data
point; this is in contrast to a fully parametric estimation procedure, where β would be
constrained to be the same for every value of Zj,t.

We now discuss which features of the data identify β(z) in equation (5). As we are
differencing out the house-specific, time-invariant characteristics, β(z) is identified by
the remaining, within-house variation in housing price, year of sale, and ozone. Given
the nonparametric model, price is locally linear in both year and ozone, that is, in the
vector Zj,t. This means that for each value of z, β(z) is identified using within-house
variation from houses with values of Zj,t and Zj,t–1 “close” to z.

Given the linear nature of this problem, estimation of β(z) may be summarized as
the following weighted least-squares regression:

β zð Þ 5 ~Z0Wz~Z
� �–1~Z0Wz~P, (8)

where n 5 oJ
j51Tj is the total number of first-differenced observations, ~Z is an (n × 2)

matrix of first-differenced (within-house) regressors, ~P is an (n × 1) vector of first-
differenced (within-house) house prices, andWZ is an (n × n) matrix of weights, such
that Wz 5 diag(Kh(Zj,t – z)).

Finally, we note that as t–1 is not the previous year, but rather the year of the house’s
prior sale, the time gap between house sales used to difference prices in (4) varies across
houses. As such, the data are not a standard panel as the intervals between observations
are random.7
7. Other recent work that estimates nonparametric models with panel data includes Hen-
derson et al. (2008), Qian and Wang (2012), and Su and Lu (2013).
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1.2. Recovering MWTP Functions Using a Panel of Buyers

In this section, we demonstrate that it is straightforward to recover the flexible distri-
bution of linear MWTP functions with panel data on home buyers. We begin by
specifying the utility of household i with nonhousing consumption (Ci,t), choosing a
house j with attributes (Xj, Zj,t), in period t:

U Xj, Zj,t, Ci
� �

5 a0,i 1 a1,iXj 1
a2,i

2
X2
j 1 a3,iZj,t 1

a4,i

2
Z2
j,t 1 Ci,t, (9)

where we have normalized the coefficient on consumption to one. Preference param-
eters (i.e., the ai) are assumed to be stable over time. We consider alternative utility
functions in the appendix, available online.

Household i faces a budget constraint, Ci,t 1 Rj,t ≤ Ii,t, where Ii,t denotes income
and Rj,t denotes the imputed annual rent or housing expenditure associated with
house j. In practice, we calculate this figure as 5% of the observed transaction price.8

Assuming that household i’s budget constraint will bind, we can incorporate the
budget constraint (Ci,t 1 Rj,t 5 Ii,t) to arrive at the indirect utility function:

Vi,j,t 5 a0,i 1 a1,iXj 1
a2,i

2
X2
j 1 a3,iZj,t 1

a4,i

2
Z2
j,t 1 Ii,t – Rj,t

� �
: (10)

We now demonstrate that this functional form will yield the same linear MWTP
specification that is common in the hedonics literature. Moreover, as long as MWTP is
not a function of time-varying household attributes, the parameters of the MWTP func-
tion can be identified with just two observations for each household. The first-order con-
dition associated with the household’s optimal choice of Zj,t is given by:

∂Vi,j,t

∂Zj,t
5 a3,i 1 a4,iZj,t –

∂Rj,t

∂Zj,t
5 0 (11)

and household i’s MWTP function for Zj,t is given by:

MWTP Zj,t
� �

5 a3,i 1 a4,iZj,t: (12)

For household i, we need to recover the values of two unknown parameters: (a3,i,a4,i),
or the intercept and slope of MWTP, respectively.9 Fortunately, we observe household
8. This is a commonly used discount in the literature. See Poterba (1984) for a discussion of
converting prices to annualized user-cost measures.

9. Murray (1975) takes the approach of using an equation very similar to (11), except with-
out individual heterogeneity in preference parameters, to form an estimating equation. Recov-
ering estimates of (∂Rj,t)/(∂Zj,t) from the first stage, he then recovers estimates of a3 and a4

from a two-stage least squares procedure using income and prices as instruments.
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i in panel data on (at least) two occasions. For households observed twice, we then have
two equations in two unknowns:

a3,i 1 a4,iZj＊ ið Þ,1 5 rj＊ ið Þ,1   a3,i 1 a4,iZj＊ ið Þ,2 5 rj＊ ið Þ,2, (13)

where

rj＊ ið Þ,t 5
∂Rj,t

∂Zj,t

����
Zj,t5Zj＊ ið Þ,t

:

Estimates of rj＊(i),t are recovered in the first-stage nonparametric regressions and t 5 1,
2 are the two periods in which household i purchases.

Solving these two equations yields closed-form solutions for the structural param-
eters of the utility function, that is, the household-specific solutions for both the in-
tercept and the slope of the MWTP function.10 Respectively, these are given by:

â3,i 5
r̂j＊ ið Þ,2Zj＊ ið Þ,1 – r̂j＊ ið Þ,1Zj＊ ið Þ,2

Zj＊ ið Þ,1 – Zj＊ ið Þ,2
â4,i 5

r̂j＊ ið Þ,1 – r̂j＊ ið Þ,2
Zj＊ ið Þ,1 – Zj＊ ið Þ,2

: (14)

As the second stage is an inversion, rather than an estimation, the only sampling
variance of the estimates comes from the first stage.11 While the second stage does
not add sampling variation, the standard errors will be a function of the difference be-
tween Zj,1 and Zj,2 observed in the second-stage data. As can be seen in the formulas
for the variance of â3,i and â4,i in equation (15), households that consume similar
amounts of Z in both periods will have larger standard errors, all else equal. In prac-
tice, we bootstrap all standard errors using 1,000 draws.

var â3,ið Þ 5
var r̂j＊ ið Þ,2

� �
Z2
j＊ ið Þ,1 1 var r̂j＊ ið Þ,1

� �
Z2
j＊ ið Þ,2 – 2covar r̂j＊ ið Þ,2, r̂j＊ ið Þ,1

� �
Zj＊ ið Þ,1Zj＊ ið Þ,2

Zj＊ ið Þ,1 – Zj＊ ið Þ,2
� �2

var â4,ið Þ 5
var r̂j＊ ið Þ,1

� �
1 var r̂j＊ ið Þ,2

� �
– 2covar r̂j＊ ið Þ,1, r̂j＊ ið Þ,2

� �
Zj＊ ið Þ,1 – Zj＊ ið Þ,2
� �2 :

(15)(15)
10. Having two equations is a result of observing the household purchase twice. Having two
unknowns reflects the assumption that the MWTP function is linear. As such, identifying
(completely heterogeneous) nonlinear MWTP functions would require observing the house-
hold make more than two purchases. See Harberger (1971) and Banzhaf (2015) for a discus-
sion about how using a linear MWTP function provides a second-order approximation to
nonmarginal welfare measures for any possible constant demand function.

11. The price function is very precisely estimated (see fig. A1). Consequently, standard er-
rors for the second-stage MWTP estimates and welfare calculations are very small, as can be
seen in figures A2–A6.
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It is possible to determine how households’MWTP functions differ systematically
with fixed household attributes, Ai (e.g., race, completed education, or gender).

12 This
is easily done by performing the following least-squares regressions in a separate stage:

â3,i 5 d3,0 1 A0
id3,1 1 ς3,i â4,i 5 d4,0 1 A0

id4,1 1 ς4,i: (16)

While estimating a linear MWTP is an improvement over the common alternative
of estimating a flat (i.e., perfectly elastic) MWTP function, it remains the case that
with two observations per household, we are restricted to recovering a linear (but fully
heterogeneous) MWTP function. Having access to more than two observations per
household would allow the assumption of linearity to be weakened. For example, with
three observations per household, one could recover a quadratic MWTP function.

With three (or more) observations per household, one could alternatively allow for
richer forms of utility. One example would be to relax the assumption that preferences
do not change over time and allow for time-varying MWTP functions by estimating
a coefficient on a time-varying attribute, such as income. Another example would be
to allow for nonseparability between the amenity of interest, Zjt, and another (time-
invariant) housing characteristic in Xj. We elaborate on both of these examples (and
present results from the estimation of these alternative specifications) in the online ap-
pendix.

Finally, we note that this approach relies critically on having access to data where
households can be observed making more than one purchase. As such, the simplicity
of connecting the dots comes with higher data requirements.

2. DATA

To implement our first-stage nonparametric regressions, we use data describing single-
family housing transactions over the period 1991–2003 in the Bay Area of California.
For the second-stage recovery of the MWTP functions, we require data on a panel of
home buyers. For this, we assemble a data set by combining information from the real
estate transactions data set and a data set describing mortgage applicants’ demographic
characteristics obtained through the Home Mortgage Disclosure Act (HMDA).

2.1. Property Transactions Data

The real estate transactions data we employ cover the six core counties of the San
Francisco Bay Area (Alameda, Contra Costa, Marin, San Francisco, San Mateo, Santa
12. If A were time varying, we would need to observe the household on more purchase occa-
sions. For example, if Ai were a time-varying scalar that affected both the intercept and slope of
MWTP, preference heterogeneity could be represented as a3,i,t 5 g3,0,i 1 g3,1,iAi,t and a4,i,t 5
g4,0,i 1 g4,1,iAi,t. A household would need to be observed on four occasions, with equation (11)
yielding four equations that could be solved for the four unknowns, g3,0,i, g3,1,i, g4,0,i, g4,1,i. IfAi,t

were to shift only the slope or the intercept of theMWTP function (but not both), the household
would only need to be observed on three purchase occasions.
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Clara). The data were purchased fromDataQuick and include transaction dates, prices,
loan amounts, and buyers’, sellers’, and lenders’ names for all transactions. In addition,
the data for the final observed transaction include housing characteristics, such as exact
street address, square footage, year built, lot size, number of rooms, number of bath-
rooms, and number of bedrooms.

As housing characteristics are only provided for the final assessment of each prop-
erty, we take steps to ensure that the house has not undergone any major changes.
First, to control for land sales or rebuilds, we drop all transactions where “year built”
is missing or with a transaction date that is prior to “year built.” Second, to control for
major property improvements that would not present as a rebuild, we drop properties
that experience a yearly appreciation/depreciation rate that is more than four times
greater than the average appreciation/depreciation rate (in absolute value).13 Addi-
tionally, we drop transactions where the price is missing, negative, or zero. After using
the consumer price index to convert all transaction prices into 2000 dollars, we drop
1% of observations from each tail to minimize the effect of outliers. As we merge in the
pollution data using the property’s geographic coordinates, we drop properties where
latitude and longitude are missing.14

Finally, we restrict our analysis to properties with multiple sales over the 13-year
period.15 This yields a final sample of 277,011 transactions (i.e., property-year obser-
vations) comprising 126,227 unique properties. Table 1 describes the data.

2.2. Buyer Characteristics Data

In order to implement the second stage of our estimator, we need to create a panel of
households and their chosen properties over time.16 This involves first identifying and
matching households over time in the property transactions data set and, second,
merging-in the attribute data from the HMDA data set. This is possible as we have
13. In a repeat-sales analysis, similar in spirit to Case and Shiller (1989), we regress log prices
on a set of house and year dummies, which provides us a crude measure of yearly appreciation (or
depreciation) rates in the Bay Area.

14. Although we use a repeat-sales estimation approach, we make some cuts on property
characteristics to ensure that all single-family homes are trading in the same market: dropping
properties where year built is pre-1850, lot size is either zero or greater than three acres, square
footage is either less than 400 or greater than 10,000, number of bedrooms or bathrooms is
greater than 10, number of total rooms is greater than 15, or number of stories is greater than
three.

15. However, we drop properties that sell more than once within a calendar year or more
than five times over the 13-year period.

16. While observing the characteristics of the buyers is not necessary for recovering the
MWTP functions, observing them allows us to decompose preferences by race and allows us
to check whether observable covariates are balanced between the one-purchase and multiple-
purchase samples.
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buyer and seller names in the transaction record as well as common variables in both
data sets.

To track households over time we use the buyer’s name. To minimize the proba-
bility of finding erroneous matches, we only accept a match if the entire name field
provided in the data set matches over time. In most cases, the entire name includes
a first and last name for both the primary buyer and the secondary buyer (i.e., usually
the spouse) and it often includes middle initials.17 As counties may record data differ-
ently, we also only use matches where purchases occurred within the same county.18

Finally, we keep only observations where the buyer is observed on either two or three
purchase occasions.19

The individual attribute data come from a data set on mortgage applications pub-
lished through the Home Mortgage Disclosure Act of 1975. These data are publicly
available and provide information on all mortgage applications filed in the Bay Area
over the period of our sample.20 Included are all applicants’ race and gender, income,
Table 1. Housing Transactions Data

Full Sample
n 5 630,384

Repeat-Sales Sample
n 5 277,011

Variable Mean SD Mean SD

Price (in year 2000 $) 379,368.70 202,887.70 371,189.30 192,626.00
Sq. ft. house 1,716.42 679.78 1,651.01 634.30
Sq. ft. lot 7,148.83 7,962.83 6,523.88 7,068.32
Year built 1966.92 22.66 1968.19 21.67
No. bedrooms 3.20 .90 3.12 .88
No. bathrooms 2.12 .73 2.09 .69
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loan amount, lender name, and census tract of the property. We are able to merge the
individual attributes in the HMDA data set to the buyers in the property transactions
data set using the common variables of lender name, loan amount, transaction date,
and census tract of the property.21 We successfully match approximately two-thirds
of households in the transactions sample to the raw HMDA sample.22

Table 2 provides statistics describing the one-purchase, two-purchase, and three-
purchase buyers. It is important to note that our estimation only uses those who pur-
chase two or three times over the sample period, which in principle, could result in a
nonrandom sample if those who purchase more than once have different preferences.
However, based on observable characteristics, the two- and three-purchase sample is
very similar to the one-purchase sample. There are very minor differences in race as
well as the price of housing. Mean income is approximately 10% higher in the two-
and three-purchase sample, with a slightly smaller differential in median income.

2.3. Ozone Data

The ozone data we employ are taken from the California Air Resources Board.23 We
use yearly ozone data from 35 monitors in the nine counties of Alameda, Contra Costa,
Table 2. One-, Two-, and Three-Purchase Samples of Households

One Purchase
n 5 315,215

Two Purchase
n 5 6,057

Three Purchase
n 5 218

Variable Mean Median Mean Median Mean Median

Asian .24 0 .26 0 .29 0
Black .03 0 .03 0 .01 0
Hispanic .11 0 .13 0 .15 0
White .61 1 .58 1 .54 1
Income (in yr 2000 $) 114,464 96,014 125,779 103,476 132,934 109,224
Price (in yr 2000 $) 390,801 347,580 413,834 359,373 394,349 330,067
21. See Bayer et al. (20
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Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma over the pe-
riod 1990–2004. In particular, we use the monitor data to construct property-specific
measures of the number of days exceeding the 1-hour California standard (i.e., 90 parts
per billion).

In addition to the ozone readings, the data set provides information on the “year
coverage,” or the percentage of time (during the relevant high-ozone season) each par-
ticular monitor was available and the geographic coordinates of each monitor.24 Using
this coverage variable, we drop monitors with less than 60% coverage in a given year
(amounting to less than 4% of the available monitor-year observations).

Using the latitudinal and longitudinal coordinates of both the monitors and the
properties, we use the “Great Circle” algorithm to compute the distance to all monitors
from each property. We then create a 3-year weighted average for each property of all
monitors’ readings, weighting distance by one over distance squared.25 In order to
mitigate boundary effects, we include monitor data from the surrounding counties
of Napa, Solano, and Sonoma in addition to the six counties that appear in our trans-
actions data.

The maps in figure 2 describe the spatial distribution of ground-level ozone pol-
lution in the Bay Area. Two important features emerge from these pictures. First, ge-
ography is largely responsible for cross-sectional variation in pollution. San Francisco
(on the tip of the peninsula extending from the South Bay into the Pacific Ocean),
Oakland (in the East Bay), and San Jose (at the southern end of the San Francisco
Bay) all face heavy traffic congestion. Wind patterns, however, mitigate much of
the ozone pollution in San Francisco and Oakland, while worsening it in San Jose.
Mountains ringing the southern end of the Bay Area block air flows and contribute
to this effect. The mountains on the eastern side of the bay are similarly responsible
for high levels of pollution along the I-680 corridor in eastern Contra Costa and Al-
ameda counties.

These maps also make clear that there is significant variation in pollution levels
over time. Figure 3 describes this time variation. Much of this is due to a variety of
programs that were initiated after California passed its Clean Air Act in 1988. After
multiple years of relatively low ozone pollution, while the Bay Area counties were des-
ignated as being out of attainment according to EPA rules, the Bay Area experienced
the worst air quality since the mid-eighties in 1995, corresponding to the time at
which it was placed back into attainment and mandatory ozone reduction programs
24. Some monitors were opened or permanently closed during this time period.
25. We use a 3-year average of ozone as price and homeowner behavior more likely reflects

this slightly longer average of ozone rather than the short-run annual measures. Results are ro-
bust to this choice of data smoothing. A similar weighted approach was used in Chay and
Greenstone (2005). See Bishop and Murphy (2018) for a discussion of using time-averaged
amenities in hedonic analyses.
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were eliminated. In 1996, the Vehicle Buyback Program for cars manufactured in
1975 or before was implemented. This program, in addition to the Lawn Mower Buy-
back and the Clean Air Plan of 1997, presumably contributed to falling ozone levels.
With even stronger mandatory ozone reduction policies after 1998 (mostly targeted at
mobile sources), the remaining years of our sample returned to relatively low ozone
levels. Also during the late 1990s, almost 100 emitting facilities were reviewed under
the Title V Program Major Facility Review. There is no reason to expect that any of
these programs would have had special economic consequences for housing prices in
any particular part of the Bay Area, aside from those coming through changing ame-
nity values.

We use the number of days in the course of each year that the state maximum
1-hour ozone concentration of 90 ppb is violated (i.e., ozone exceedances) as our mea-
sure of ground-level ozone, as it is a good measure of the frequency of extreme pollution
events that house buyers may be aware of. As 1-hour ozone concentration is a compo-
nent of the Air Quality Index that is published online and in newspapers, another po-
Figure 2. Ozone pollution in the Bay Area
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tential measure of ozone would be the yearly maximum 1-hour ozone concentration
(which is also available through the California Air Resources Board). Therefore, in ad-
dition to estimating the model using the exceedance data, we also estimate the model
using the maximum 1-hour concentration data. Estimation results are similar across
the two measures of ozone and are presented in the appendix.

3. RESULTS

In this section, we describe our results. First, we illustrate the results of our nonpara-
metric estimation procedure that is used to estimate hedonic gradients with respect to
ground-level ozone pollution. Second, we recover the second-stage MWTP functions.
In particular, we use the panel of 6,059 households that are observed purchasing two
houses in our data set to recover estimates of fully heterogeneous MWTP functions as
described in section 1.2. We also use the sample of 218 households that buy three
times to recover estimates of MWTP functions that are allowed to vary with non-
housing expenditure. As a comparison, we show second-stage estimates of MWTP
functions using two alternative approaches that do not require panel data and are com-
monly applied in the literature.

3.1. Results from the First-Stage Hedonic Regressions

The local linear estimation allows the estimate of the slope coefficient, β(z), to differ
for each observed value of ozone pollution for each year of the panel. Thus, for each
Figure 3. Average number of days exceeding the CA 1-hour standard
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year, the gradient may be graphically represented as a flexible function of ozone pol-
lution.

In estimation, we choose values of the bandwidths such that the gradients are
monotonic, as having monotonic gradients allows us to compare our results with ap-
proaches where the MWTP function is flat. Ideally, we would use cross-validation to
choose these smoothing parameters, but the model in which the MWTP function is
flat requires monotonicity to avoid violations of the second-order conditions for utility
maximization. Thus, we oversmooth to achieve monotonicity.26 An alternative ap-
proach to ensure monotonicity of the gradients would be to directly impose shape re-
strictions on the price function, that is, impose that the price function is monotonic,
convex, and smooth.27 However, the existing shape-restriction-based approaches are
not applicable as we face a multivariate problem with a large number of observations.28

In practice, we isolate the set of bandwidths over ozone and year that ensure mono-
tonicity and choose the pair with the smallest bandwidth for ozone.29 We present re-
sults under different bandwidth choices in the appendix and show that our results are
robust to the choice of bandwidths.

We estimate hedonic gradients for each of the 13 years in our sample. For ease of
exposition, we show the hedonic gradient for three of these years (1992, 1997, and
2002) in figure 4 and show all of the gradients with 99% confidence intervals in
figure A1 (figs. A1–A10 are available online in the appendix).30 The gradients are
everywhere negative in sign (i.e., an increase in the level of pollution at a house leads
to a reduction in its sale price, ceteris paribus). Moreover, these negative gradients are
upward sloping (i.e., the compensating reduction in price gets smaller/closer to zero at
higher pollution levels). This suggests that households may sort based on preferences
26. When the gradients are fully flexible, violations of the second-order conditions for utility
maximization arise; households that choose a level of z which lies on a downward-sloping part
of the gradient are not maximizing utility unless the MWTP function is sufficiently steep. In
the case of the flat MWTP functions, this sufficient steepness cannot be achieved.

27. See Henderson and Parmeter (2015) for a comprehensive discussion of shape-based re-
strictions in nonparametric models.

28. Using constraint-weighted bootstrapping (e.g., Hall and Huang 2001; Du et al. 2013) to
ensure monotonicity of the price gradient would require solving a quadratic program for each of
the approximately 160,000 observations in the data. See Ryan and Wales (2000) for an illus-
tration of a case where enforcing a constraint to hold at a single, well-chosen point can result in
nearly all of the observations satisfying that constraint.

29. This is achieved by setting the bandwidth over ozone to 4.01 and the bandwidth over
year to 3.35. We drop outlier households that choose quantities of ozone in 1999 that exceed
the 99th percentile of ozone in that year, as the far right tail of the 1999 gradient experienced
the most violations of monotonicity at lower bandwidths. Note, however, that MWTP results
are not sensitive to this cut.

30. Each gradient is plotted between the 1st through the 99th percentiles of ozone for that
year.
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(i.e., those with a lower willingness to pay tend to live in places with greater levels of
pollution). Another feature of the data becomes evident when comparing figure 4 with
figure 3: as expected, average exposure to ozone is higher in periods where the gradient
is more negative (i.e. when the compensating reduction in price is larger). These fea-
tures have important consequences for policy analysis and are discussed in detail in
section 4.

Finally, we show the density of gradients evaluated at the point of ozone exposure
in figure 5, and with 99% confidence intervals in figure A2. Applying the first-order
condition for utility maximization allows us to interpret these estimates as local mea-
sures of MWTP, holding locally at the point of observed exposure. The median value
for the distribution presented in figure 5 is –$801.

3.2. Results from the Second-Stage MWTP Estimation

3.2.1. Demand Estimation with the Two-Purchase Panel

Employing our approach with a panel of households that are observed on two separate
purchase occasions allows for the recovery of both an intercept and a slope coefficient
for the MWTP function for each household. Thus, each household’s MWTP func-
tion is allowed to vary with their level of ozone exposure, which can have important
implications for valuing large changes in pollution. The fully heterogeneous slopes and
intercepts are recovered according to the formulas in equation (14).

In a minority of cases (19%), the recovered slopes are positive and sufficiently steep
that they exceed the positive slope of the gradients, thus violating the second-order
Figure 4. Hedonic price gradients (1992, 1997, 2002)
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conditions for maximization. As these households’ estimated behavior is not consis-
tent with utility maximization under the assumptions of our model, we drop them
from the analysis that follows. Two potential factors could cause us to incorrectly re-
cover a household’s slope, which would explain why some households do not appear
to be maximizing utility. The first is that preferences may not be stable over time (which
violates our assumption of time-invariant preferences) and the second is that the merge
on buyer name in the data is potentially imperfect. While our data are novel, even richer
data could potentially address both of these issues. For example, richer data describing
time-varying attributes would allow our MWTP curve to vary over time based on ob-
servable characteristics. Additionally, a data set that formally tracked households over
time would allow us to avoid the name merge altogether; while we use the strictest al-
gorithm for tracking households, we have found that less-strict algorithms lead to small
increases in the number of second-order-condition violations, which is suggestive that
some households are imperfectly tracked.

We find considerable evidence that MWTP varies with ozone with a median slope
value of –$209. However, it is difficult to summarize the joint distributions of inter-
cepts and slopes in a single figure. Instead, we focus on the distribution of MWTP
elasticities (with respect to ozone), which is calculated as

â4,i
Zj＊ ið Þ,t
r̂j＊ ið Þ,t

:

Figure 5. Distribution of local estimates of MWTP
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The distribution of these elasticities is shown in figure 6, and the 99% confidence in-
tervals are shown in figure A3.

The elasticity of MWTP with respect to ozone exposure is consistently positive,
implying that the (negative) MWTP for pollution gets larger (in absolute value) as
pollution increases, with a median value of 0.69.31 The distribution of these elasticities
also shows significant heterogeneity. While the median value is 0.69, the distribution
has an interquartile range of 0.89. This elasticity is not, however, strongly correlated
with the level of ozone pollution people are experiencing (i.e., a correlation of 0.01). As
a partial robustness check, we also calculate the correlation between the elasticity and
the gap between years of home purchases and, encouragingly, we find it to be very close
to zero at 0.02.

Finally, we can decompose the intercept (â3,i) and slope (â4,i) coefficients accord-
ing to equation (16). In figure 7, we plot the mean MWTP functions conditional on
race for each of the observed races in our data: Asian, black, Hispanic, and white.32

From this figure, it can be seen that Asians and whites have steeper MWTP functions
Figure 6. Distribution of MWTP elasticities
31. In a small number of cases (8%), the elasticity is negative. This corresponds to an upward-
sloping MWTP function that still satisfies the second-order conditions for utility maximization.
That is, while bothmarginal utility and the price gradient are increasing, marginal utility is increas-
ing at a slower rate so an interior solution exists.

32. Each MWTP function is plotted between the 1st through the 99th percentiles of ozone
exposure.
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compared with blacks and Hispanics. This translates into a higher absolute value for
MWTP only at larger levels of ozone exposure: for levels of ozone exposure below the
median of 2.59, the MWTP is roughly similar for all groups.

3.2.2. Alternative Specifications: Inversion with Cross-Sectional Data

For the sake of comparison, we consider two alternative second-stage specifications
that allow for the recovery of individual-specific preference parameters. These speci-
fications employ cross-sectional data and are commonly used approaches to recovering
the MWTP function. To implement these, we pool our data over time and treat our
panel of both two- and three-purchase households as a cross-section.

The first alternative is to allow for heterogeneity in the intercept of the MWTP
function but specify that the MWTP function is flat.33 As we know that the MWTP
at the point of consumption is given by rj＊(i),t, the entire MWTP function is simply
recovered as r̂j＊(i),t. In other words, with flat MWTP functions the slope parameter
(a4,i) is set to zero for all households. The distribution of estimated intercepts (â3,i)
is then given by figure 5.
Figure 7. Average MWTP by race
33. As noted in Bishop and Timmins (2018), a flat MWTP function corresponds to either
Bajari and Benkard (2005) with a linear utility function or the Rosen (1974) model with a linear
utility function where the standard endogeneity problem is trivially solved by assuming that the
MWTP function does not depend on Zjt.
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The second alternative is to use the functional form of the utility function to pin
down the slope of the MWTP function in the spirit of Bajari and Benkard (2005).
We implement this by specifying an indirect utility function of:

Vi,j,t 5 a0,i 1 a1,iXj 1
a2,i

2
X2

j 1 gi log f – Zj,t
� �

1 Ii,t – Rj,t
� �

, (17)

which yields an MWTP function of –gi/(f – Zj,t). The argument of the utility func-
tion is a measure of clean air, f – Zj,t, which allows the MWTP function for Z to be
downward sloping.34 The term f is chosen to be the smallest number such that all
values of f – Zj,t are positive, that is, max(Zj,t).

35 An estimate of the parameter gimay
then be recovered as:

ĝi 5 –r̂j＊ ið Þ,t f – Zj＊ ið Þ,t
� �

: (18)

While this specification does allow MWTP to vary with both ozone and income, it
does so in a highly restrictive way. In particular, the elasticity of MWTP with respect
to clean air (f – Zj,t) is restricted to be 1. Accordingly, we refer to this model as the
unitary elasticity model. That such a restriction is required is not surprising; a curve
describing an individual’s MWTP function is being identified from a single data point.
In this unitary elasticity model, the slope of the MWTP function (evaluated at the
point of exposure) is equal to –gi/(f – Zj,t)

2, which given equation (18), is recovered
as r̂j＊(i),t/(f – Zj＊(i),t).

4. ESTIMATING THE WELFARE EFFECTS OF A NONMARGINAL

CHANGE IN AIR QUALITY

To illustrate the importance of estimating heterogeneous and downward-sloping
MWTP functions, we consider the valuation of a nonmarginal change in ozone expo-
sure. Correctly estimating heterogeneous MWTP functions is critical from a policy
perspective as it is important to know the correct slope of the MWTP as well as if
those who are exposed to larger changes in ozone are those who are more or less sen-
sitive to these changes. In other words, how steep are the MWTP functions and do
the households exposed to the largest changes have the steeper or flatter MWTP
34. Note that a typical specification for “goods” would be Vi,j,t 5 a0,i 1 a1,iXj 1 a2,iX2
j 1

gi log(Zj,t) 1 (Ii,t – Rj,t). If Z is a “good” (i.e., g > 0), then the MWTP function will be down-
ward sloping. However, if Z is a “bad” (i.e., g < 0), then the MWTP function will be upward
sloping, which itself highlights the restrictiveness of using functional form to recover the slope of
the MWTP function. Therefore, we use a measure of clean air, f – Zj,t, allowing the MWTP
function for Z to be negative and downward sloping.

35. In the results below, the flat MWTP model and unitary-elasticity yield similar results. If
larger values of f are chosen, the results become even more similar as larger values for f lead to
flatter MWTP slopes.
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functions? These questions are particularly important given that households likely sort
based on their preferences for ozone.

In this analysis, we consider the welfare effects associated with increasing each
household’s exposure to ozone by 33% of their existing exposure level. Given this
framework, those with the largest exposure will receive the largest change in ozone.
To put this into context, a 33% increase implies that the average change in ozone ex-
posure is one-half of the median within-year standard deviation of ozone.36

We first present the welfare results from our panel-data-estimated MWTP func-
tions. We then compare these with the results from the flat MWTP functions to illus-
trate the importance of allowing for downward-sloping MWTP curves. Finally, we
compare our results with those from the unitary elastic MWTP functions to highlight
the importance of estimating, rather than specifying, heterogeneity in MWTP slopes.37

Using our model with heterogeneous slopes, we find that the mean willingness to
pay to avoid a 33% increase in ozone is $1,021 and that the median willingness to
pay to avoid the increase is $770. There is considerable heterogeneity as evidenced by
the interquartile range of $1,106. The full distribution of welfare effects is shown in fig-
ure 8, and the 99% confidence interval is shown in figure A4.

It is well accepted in the literature that using marginal estimates to value non-
marginal changes leads to biased welfare estimates. This is effectively what is being
done in the flat MWTP case.38 In our context, this bias would lead to smaller esti-
mated welfare effects. We find this: the welfare effects are considerably smaller under
the assumption of flat MWTP curves. The mean welfare loss is only $848 and the
median loss is $636.39

Less well studied in the literature is the importance of allowing for heterogeneity
in the slope of MWTP functions (and the importance of correctly estimating this
heterogeneity). To illustrate the importance of estimating heterogeneity, we compare
our results with those from a Bajari-Benkard-style unitary elasticity model, where the
MWTP function is given by –gi/(f – Zj,t). The unitary elasticity model yields sub-
stantially different welfare estimates than our panel-data estimates. The mean and
36. The within-year standard deviations for the 13 years are: 2.0671, 2.0533, 1.6361,
2.3547, 2.9686, 2.5915, 2.6309, 2.0909, 2.3211, 1.1030, 1.6390, 1.7795, and 1.4282. The me-
dian of these numbers is 2.0671 and a 33% increase implies an average change of 1.0303.

37. For all specifications, we use the full sample of households (those that purchase two and
three times), dropping only those households that have slopes below the 1st percentile in the
distribution of â4,i. Results are robust to dropping those with very steep slopes.

38. This bias exists even when one allows for heterogeneity in the intercepts, as done here.
Further restricting the MWTP to have a common intercept would add an additional bias as,
even in the case of marginal changes, the level of the MWTP would be incorrectly estimated.

39. The interquartile range of the distribution is $876. The full distribution of welfare ef-
fects and 99% confidence interval is shown in figure A5.
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median welfare costs are very close to the flat-MWTP case at $909 and $652, respec-
tively.40

To understand the differences between our estimates and the unitary elasticity es-
timates, it is worth revisiting the distinctions between the frameworks. In both frame-
works, the level of the MWTP function (at the point of consumption) is recovered by
the first-order condition for utility maximization and the price gradient. The key dis-
tinction between the two approaches is in the recovery of the slope of the MWTP
function going through that point.41 In the unitary elasticity framework, the slope
of the MWTP function is dictated by the functional form of the utility function.
In contrast, this paper shows how one can use panel data to estimate the slope of
the MWTP function. Intuitively, households’ sensitivity to price changes is observed
directly in the data: how much does the household change their ozone exposure when
the implicit price of ozone changes? In this application, the MWTP function is esti-
mated to be considerably steeper when estimated using the panel-data approach.

The unitary-elasticity model also imposes counterintuitive patterns on the hetero-
geneity of slopes. In the data, when the price gradient lies further from zero (i.e.,
Figure 8. Welfare costs of a nonmarginal (33%) increase in ozone
40. The interquartile range is $930. The full distribution of welfare effects and 99% confi-
dence interval is shown in figure A6.

41. It is also true for the flat-MWTP model that the level of the MWTP function (at the
point of consumption) is recovered by the first-order condition and the price gradient.
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households receive a bigger compensation for exposure to ozone), average exposure to
ozone is larger. While this data pattern is to be expected, the framework of the unitary
elasticity model dictates that those who are exposed to the most ozone have steeper
MWTP curves on average. This can be seen in the correlation between the slope
of the MWTP function (evaluated at ozone exposure) and the amount of ozone ex-
posure, which is –0.56.42 In contrast, using panel data to estimate the slopes yields the
(more sensible) result that those who are exposed to the most ozone have flatter
MWTP curves on average. With our estimated slopes, the correlation between the
slope of the MWTP function and the amount of ozone exposure is 10.27.

It is also worth noting that, as the policy we considered proportionally changed
ozone levels, the unitary-elasticity model assigned the steepest MWTP curves to those
who experienced the greatest change. If we had instead considered a policy that in-
duced a constant change in ozone levels, the unitary-elasticity estimates would have
been even closer to the flat-MWTP function case. Analogously, with a constant-
change policy the panel-data estimates would have been even further from the flat-
MWTP function case.

Finally, we consider a 33% reduction in ozone with results following a similar, yet
opposite, pattern. In our panel-data framework with estimated slopes, the mean wel-
fare benefit is $675. By construction, the mean welfare benefit in the flat-MWTP
framework is simply the negative of the cost for the 33% increase in ozone, that is,
$848. In the unitary elasticity framework with assigned slopes, the mean welfare ben-
efit is again close to the flat-MWTP case at $806.

5. CONCLUSION

We show in this paper how access to panel data allows the econometrician to observe
each household’s sensitivity to changes in implicit prices, thus recovering a fully het-
erogeneous estimate of the MWTP function. Applying this method to valuing a
nonmarginal change in ozone exposure in the Bay Area of California, we find evidence
of large welfare effects. Importantly, we find serious implications for this valuation ex-
ercise when we apply existing methods in the literature: (i) assuming flat MWTP
functions and (ii) assigning MWTP slopes based on functional-form assumptions.
As one would expect, the assumption of flat MWTP functions biases the welfare costs
42. The first factor driving this positive correlation is that (f – Z) appears in the denom-
inator of the MWTP function—larger values of Z therefore lead the econometrician to infer
steeper MWTP curves (i.e., more negative slopes). The second factor driving this positive cor-
relation is that r̂j＊(i),t appears in the numerator of the estimate of the MWTP function. As the
price gradients are upward sloping, this leads the within-year correlation between MWTP slope
and ozone exposure to be positive. However, this within-year positive correlation is outweighed
by a strong between-year effect which leads to negative correlation between MWTP slope and
ozone.
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associated with a proportional increase in ozone toward zero. Potentially less expected
is that the method of assuming MWTP-function slopes (via functional form) deter-
mines the empirical correlation between ozone-exposure level and assigned slope. In
our application, this is seen in the steepest slopes being assigned to those households
with the highest levels of consumption.

Importantly, the panel-data-based estimation approach described in this paper is
increasingly implementable with the growing availability of panel data sets that match
buyer attributes to the prices and characteristics of the properties they purchase. In
addition, it is applicable to a wide variety of nonmarginal policy analyses, including
the welfare implications of changing the levels of other local pollutants or changing the
levels of local school quality or crime rates. Importantly, this method allows for the re-
covery of fully heterogeneousMWTP functions and for the analysis of nonmarginal pol-
icy changes without encountering the well-known endogeneity issues with the recovery
of hedonic demand functions.
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