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a b s t r a c t 

The hedonic model of Rosen (1974) has become a workhorse for valuing the characteristics of differentiated 

products despite a number of well-documented econometric problems, including a source of endogeneity that 

has proven difficult to overcome. Here we outline a simple, likelihood-based estimation approach for recovering 

the marginal willingness-to-pay function that avoids this endogeneity problem. Using this framework, we find that 

marginal willingness-to-pay to avoid violent crime increases by sixteen cents with each additional incident per 

100,000 residents. Accounting for the slope of the marginal willingness-to-pay function has significant impacts 

on welfare analyses. 
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. Introduction 

Dating back to the work of Court (1939) ; Griliches (1961) , and
ancaster (1966) , hedonic techniques have been used to estimate the
mplicit prices associated with the attributes of differentiated products.
he seminal work of Rosen (1974) proposed a theoretical structure for
he hedonic regression and a two-stage procedure for the recovery of
arginal willingness-to-pay (MWTP) functions for the characteristics

f differentiated products. Importantly, his two-stage approach allowed
ouseholds’ heterogenous MWTPs to be functions of the quantities of
he product attribute that they consume. 1 This is particularly impor-
ant when considering non-marginal policy changes (i.e., any change
hat is large enough to alter the household’s willingness to pay at the
argin). The two-stage procedure suggested by Rosen (and further de-

eloped by subsequent authors) uses variation in implicit prices (ob-
ained either by employing data from multiple markets or by allowing
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1 Similarly, the MWTP function may be allowed to vary with the level of quality of
2 See Taylor (2003) and Palmquist (2005) for a comprehensive discussion. Some

xample, omitted variables that may be correlated with the local attribute of interest

nd structural solutions to this problem (see Parmeter and Pope, 2009 for a discussio
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or non-linearity in the hedonic price function) to identify the MWTP
unction. 

With Rosen (1974) as a backdrop, the property value hedonic
odel has become the workhorse for valuing local public goods and

nvironmental amenities, despite a number of well-known and well-
ocumented econometric problems. 2 An important problem arises in the
econd stage of Rosen’s two-step procedure. In separate papers, Bartik
1987) and Epple (1987) describe a source of endogeneity that is diffi-
ult to overcome using standard exclusion restriction arguments. Specif-
cally, they note that the unobserved determinants of tastes affect both
he quantity of an amenity that a household consumes and the hedo-
ic price of the amenity. In a regression like the one described in the
econd stage of Rosen’s two-step procedure, the quantity of the amenity
hat a household consumes will therefore be endogenous. Moreover, be-
ause of the equilibrium features of the hedonic model, there are very
ew natural exclusion restrictions that one can use to solve this endo-
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 the attribute that they consume. 

 of these problems arise in the first stage of Rosen’s two-step procedure; for 

. There is a large and growing literature that describes both quasi-experimental 
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eneity problem. 3 With a few exceptions, the hedonics literature has
ubsequently ignored Rosen’s second stage, focusing instead on recov-
ring estimates of the hedonic price function and valuing only marginal
hanges in amenities. 4 , 5 

Various instrumental variables strategies have been proposed to deal
ith this problem. Epple (1987) provides a set of order conditions that
escribe a valid set of instruments. Bartik (1987) suggests instrument-
ng for the quantity of an amenity that a household consumes with
arket indicator variables and Kahn and Lang (1988) suggest a sim-

lar instrument of market indicators interacted with household demo-
raphic attributes. The intuition for these strategies is that differences
n the distribution of suppliers across markets will provide an exogenous
ource of variation in the equilibrium quantity of the amenity chosen by
ach household. The concern with these approaches is that they require
trong assumptions about cross-market preference homogeneity and the
nstrument may not induce sufficient variation in the endogenous vari-
ble. Ekeland et al. (2004) takes advantage of the non-linearity of the
edonic model to propose an alternative instrumental-variables strat-
gy which does not require assumptions about cross-market preference
omogeneity and may be used in a single-market setting. 

In this paper, we describe a simple estimation procedure for the re-
overy of the marginal willingness-to-pay function. Our parametric ap-
roach employs insights from the non-parametric estimators developed
n Ekeland et al. (2004) and Heckman et al. (2005) and makes explicit
he relationship between the quantity of the amenity being consumed
nd the attributes of the households doing the consumption. That such
 relationship should exist in hedonic equilibrium goes back to the idea
f “stratification ” found in Ellickson (1971) , which became the basis
or estimable Tiebout sorting models. 6 . This approach works even in
 single-market setting, given a flexible representation of the hedonic
rice function. Moreover, the approach is computationally simple and
oes not require any more in terms of data or assumptions than does the
tandard Rosen-style approach. 

We implement this estimation procedure using data on large changes
n violent crime rates in the San Francisco Bay Area over the period
994 to 2000. We find that recovering the full MWTP function is eco-
omically important; a household’s marginal willingness to pay to avoid
n incident of violent crime (measured by cases per 100,000 residents)
ncreases by sixteen cents with each additional incident. Non-marginal
eductions in crime of the sort seen in San Francisco and the rest of the
ation during the 1990s therefore have the potential to significantly af-
ect MWTP. We find that naive estimation approaches, which ignore this
ffect, yield estimates of total willingness to pay for crime reductions in
an Francisco that are significantly biased. The naive models overesti-
ate the willingness to pay for a crime reduction and underestimate the
3 For example, the exclusion restrictions typically used to estimate a demand system 

i.e., using supplier attributes as instruments) will not work because of the sorting process 

nderlying the hedonic equilibrium. 
4 See, for example, Black (1999) ; Gayer et al. (2000) ; Bui and Mayer (2003) ; Davis 

2004) ; Figlio and Lucas (2004) ; Chay and Greenstone (2005) ; Linden and Rockoff

2008) ; Pope (2008) ; Greenstone and Gallagher (2008) ; Bajari et al. (2012) , and Gamper- 

abindran and Timmins (2013) . 
5 Deacon et al. (1998) noted that “To date no hedonic model with site specific environ- 

ental amenities has successfully estimated the second stage marginal willingness to pay 

unction. ” Since that time, a number of papers have examined the problem of recovering 

references from hedonic estimates. Bajari and Benkard (2005) avoid the Bartik-Epple 

ndogeneity problem by relying on parametric assumptions on utility that turn Rosen’s 

econd-stage from an estimation problem into a preference-inversion procedure. Yinger 

2014) uses distributional assumptions about latent demand and unobserved heterogene- 

ty, allowing the preference parameters to be recovered from the price function itself. 

keland et al. (2004) provide an alternative approach to recovering MWTP that imposes 

ery little in terms of parametric restrictions, but requires an additive separability as- 

umption in the MWTP specification. Heckman et al. (2010) illustrate conditions under 

hich non-separable utility functions may be non-parametrically identified and estimated. 

ven with these insights, the empirical hedonics literature has largely not moved beyond 

arginal analyses. 
6 See, for example, Epple et al. (1984) ; Epple and Platt (1998) ; Epple and Ro- 

ano (1998) ; Epple and Sieg (1999) , and Kuminoff (2008) 
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67 
illingness to pay to avoid a crime increase. Similar problems are likely
o arise in other settings where policy changes are not marginal (e.g.,
ir quality, school reform, and hazardous waste site remediation). 

This paper proceeds as follows. Section 2 describes the estimation
f the model in detail. Section 3 describes the data used in our applica-
ion: housing transactions data from the San Francisco Bay Area com-
ined with violent and property crime data from the RAND California
atabase. Section 4 reports the results of applying this estimation ap-
roach to these data. Section 5 calculates the welfare effects from the
ctual non-marginal changes in crime faced by a subset of homeown-
rs and compares these welfare effects with those calculated with some
lternative procedures in the existing literature. Finally, Section 6 con-
ludes. 

. A simple estimation approach for the hedonic model 

In this section, we outline an econometric approach for the estima-
ion of the hedonic model which avoids the difficult endogeneity prob-
em altogether. In the following sections, we implement this approach in
n application of valuing crime reductions in San Francisco’s Bay Area.

Beginning with Rosen (1974) , the traditional approach has been to
quate the implicit price of an amenity Z (from the estimation of the
edonic price function) to its marginal benefit (which is a function of Z )
nd use the resulting expression as the estimating equation. The majority
f the empirical literature following Rosen has retained this framework
hile proposing corrective strategies to deal with the endogeneity of

he amenity Z . While the first-order conditions for hedonic equilibrium
rovide a set of equations that will hold in equilibrium, nothing requires
s to write the estimating equation in this manner. While this represen-
ation does provide an intuitive interpretation of utility maximization,
t is the “marginal cost equals marginal benefit ” econometric specifica-
ion itself which has created the endogeneity problem that plagued this
iterature for decades. 

In the basic structure of the hedonic model, there is no fundamental
ndogeneity problem; when choosing how much of the amenity Z to con-
ume, households take the hedonic price function as given and choose
 to maximize utility based on their individual preferences. These pref-
rences are determined by a vector of observed household character-
stics, X , and unobserved taste shifters, 𝜈. As 𝜈 and X are typically as-
umed to be orthogonal in the hedonic model, we are left with a familiar
conometric modeling environment: an endogenous outcome variable,
 , which is a function of a vector of exogenous variables, X , and an
conometric error, 𝜈. 7 

Ekeland et al. (2004) derive an expression for the distribution of Z
onditional on X . This expression is then used as the basis for a non-
arametric maximum-likelihood estimator in Heckman et al. (2005) .
mploying the insights of that framework, we show that the parame-
ers of the parametric model may be easily recovered using simple and
traightforward estimation techniques. Intuitively, the approach finds
he parameters of the MWTP function that maximize the likelihood of
bserving each household’s chosen Z . We consider the general case in
hich a closed-form solution for Z may not exist. 8 We show that by using
 simple change-of-variables technique it is straightforward to compute
7 In our empirical application, Z is exposure to violent crime and X includes income 

nd a set of race dummies. 
8 The lack of a closed-form solution will be the case for most non-linear gradient spec- 

fications (including the non-parametric specification that we estimate in Section 5 ). As 

 general rule, one should not expect the hedonic price gradient to be linear. Addition- 

lly, specifying the MWTP to be linear is not inconsistent with a nonlinear price gradient 

n equilibrium; as clearly demonstrated by Ekeland et al. (2004) , a linear MWTP func- 

ion alone does not imply a linear price gradient. For the equilibrium price gradient to 

e linear (with demand- and supply-side heterogeneity), it would not only require that 

onsumers have a perfectly linear MWTP function, but also that suppliers have a perfectly 

inear marginal willingness-to-accept function and that both preferences and profits are 

istributed exactly normal. A key insight of Ekeland et al. (2004) is that very minor per- 

urbations of any of these conditions will lead to substantial non-linearity in the resulting 

quilibrium price gradient. 
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he likelihood of observing Z . Even in this general case, estimation is
asy and is reduced to a single-parameter numerical search. 9 

.1. Model and estimation 

We begin by specifying a price function that relates the price of a
ouse to its amenities Z, H , and 𝜖. We specify the amenity of interest Z
nd, for convenience, a vector of control amenities, H . These are housing
nd neighborhood amenities which may determine both utility and price
ut which are the not the focus of the research question. Importantly,
hen Z is allowed to be a vector, the division of observable amenities

nto Z and H is without loss of generality as all observable amenities may
e included in Z (and H empty). 𝜖 denotes unobservable housing and
eighborhood amenities. 10 The indices, 𝑖 = 1 , … , 𝑁 and 𝑗 = 1 , … , 𝐽 , in-
ex households and markets, respectively. This price function is known
p to the parameter vector 𝛽, which is allowed to vary by market: 

 = 𝑃 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 ; 𝛽𝑗 ) (1)

We specify utility as being a function of amenities Z, H , and 𝜖,
s well as numeraire consumption, C . Preferences are shifted by ob-
erved household attributes, X , and by unobserved household attributes,
with std = 𝜎. Utility is known up to the parameter vector 𝛼, which is

llowed to vary by market: 

 = 𝑈 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 , 𝐶 𝑖,𝑗 , 𝑋 𝑖,𝑗 , 𝜈𝑖,𝑗 ; 𝛼𝑗 ) (2)

ormalizing the price of numeraire consumption to one, the budget con-
traint simply states that expenditure on housing and on the numeraire
ust not exceed income, I : 

 𝑖,𝑗 ≥ 𝑃 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 ; 𝛽𝑗 ) + 𝐶 𝑖,𝑗 (3)

ssuming that the budget constraint binds allows us to rewrite utility
s: 

 = 𝑈 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 , 
(
𝐼 𝑖,𝑗 − 𝑃 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 ; 𝛽𝑗 ) 

)
, 𝑋 𝑖,𝑗 , 𝜈𝑖,𝑗 ; 𝛼𝑗 ) (4)

We assume that the price function and utility function are additively
eparable in Z, H , and 𝜖. As previously highlighted, this is without loss
f generality for the observable attributes when Z is defined as a vector.

We now specify a version of this model that is standard in the liter-
ture with a quasi-linear form of utility such that the resulting MWTP
unction is linear in the scalar amenity of interest and additively separa-
le in the preference shock. While these assumptions are not required for
dentification or estimation, the resulting model is the simplest model
hat allows for an estimable slope of the MWTP function. It is also the
ightest in terms of data requirements, as it does not require data on
ousehold income. 

We parametrize utility as: 

 = 𝛼0 ,𝑗 + 𝛼1 ,𝑗 𝑍 𝑖,𝑗 + 

1 
2 

𝛼2 𝑍 

2 
𝑖,𝑗 + 𝛼3 ,𝑗 𝑋 𝑖,𝑗 𝑍 𝑖,𝑗 + 𝜈𝑖,𝑗 𝑍 𝑖,𝑗 

+ 𝑔( 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 ) + 

(
𝐼 𝑖,𝑗 − 𝑃 ( 𝑍 𝑖,𝑗 , 𝐻 𝑖,𝑗 , 𝜖𝑖,𝑗 ; 𝛽𝑗 ) 

)
(5)

here g ( · ) is an unrestricted function of H and 𝜖. The first-order condi-
ion for a household’s optimal choice of Z is then given by: 

1 ,𝑗 + 𝛼2 𝑍 𝑖,𝑗 + 𝛼3 ,𝑗 𝑋 𝑖,𝑗 + 𝜈𝑖,𝑗 − 𝑃 ′( 𝑍 𝑖,𝑗 ; 𝛽𝑗 ) = 0 (6)

The traditional estimation strategy associated with Rosen is to first
solate P ′ ( Z ; 𝛽) on the left-hand side of Eq. (6) , replace P ′ ( Z ; 𝛽) with an
stimate from the first-stage price-function regressions, and estimate the
9 In the Appendix, we (i) illustrate specific examples in which a closed-form solution for 

 may be found, including an example where the structural parameters may be recovered 

rom a reduced-form OLS regression of Z on X and (ii) provide details on the performance 

f the estimation approach with a series of Monte Carlo experiments. 
10 See Bajari and Benkard (2005) for a discussion of how to interpret 𝜖 as the residual 

rom a price regression, in which case 𝜖 can be treated as an observable amenity in the 

tility function. Alternatively, 𝜖 can be interpreted as measurement error in the price 

unction. In this case, 𝜖 will not affect utility. 
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esulting equation in a separate second stage, treating 𝜈 as the regression
rror. Eq. (7) gives this estimating equation, where the right-hand side
f (7) is the MWTP function: 

 

′( 𝑍 𝑖,𝑗 ; 𝛽𝑗 ) = 𝛼1 ,𝑗 + 𝛼2 𝑍 𝑖,𝑗 + 𝛼3 ,𝑗 𝑋 𝑖,𝑗 + 𝜈𝑖,𝑗 (7)

An alternative, and arguably more natural approach, would be to re-
rrange the first-order condition to isolate the choice of amenity Z on the
eft-hand side. However, in the absence of parametric assumptions on
he price function, P ( Z ; 𝛽), it would not be possible to solve for a closed-
rom for Z . Despite this issue, it remains clear that the consumption of Z
ould vary with observable household characteristics, X , unobservable
reference shocks, 𝜈, and the parameters of the hedonic price function,
. Thus, the traditional approach of estimating Eq. (7) directly would
uffer from endogeneity concerns and the slope of MWTP, 𝛼2 , would be
iased upward. 11 

Although Z may not be isolated on the left in Eq. (7) , the implicit
unction contains all of the necessary information to recover the pa-
ameters describing household preferences, { 𝛼1, j , 𝛼2 , 𝛼3, j , 𝜎}, condi-
ional on recovering 𝛽 in a separate first stage. 12 Importantly, a standard
aximum-likelihood estimation may be implemented by isolating 𝜈 on

he left-hand side of Eq. (7) and employing a change of variables from
 to 𝜈. Separability in 𝜈, either additive or multiplicative, is sufficient
or forming the likelihood of observing Z . In this case, the closed-form
olution for 𝜈 is given by: 

𝑖,𝑗 = 𝑃 ′( 𝑍 𝑖,𝑗 ; 𝛽𝑗 ) − 𝛼1 ,𝑗 − 𝛼2 𝑍 𝑖,𝑗 − 𝛼3 ,𝑗 𝑋 𝑖,𝑗 (8)

We make the distributional assumption that 𝜈 ∼N (0, 𝜎2 ). 13 While
his assumption is not necessary for identification, it simplifies the prob-
em and allows us to estimate the model via Maximum Likelihood. 14 Us-
ng a textbook application of a change of variables, it is straightforward
o form the likelihood of the observed vector { 𝑍 𝑖,𝑗 } 𝑁 

𝑖 =1 as: 

𝑁 

𝑖 =1 𝓁 ( 𝛼, 𝜎; 𝑍 𝑖,𝑗 , 𝑋 𝑖,𝑗 ) 

here 𝓁 ( 𝛼, 𝜎; 𝑍 𝑖,𝑗 , 𝑋 𝑖,𝑗 ) = 

1 
𝜎
√
2 𝜋

exp 

{ 

− 

1 
2 𝜎2 ( 𝜈𝑖,𝑗 ( 𝛼)) 2 

} ||| 𝜕 𝜈𝑖,𝑗 ( 𝛼) 
𝜕𝑍 𝑖,𝑗 

|||
(9

To implement this maximum-likelihood procedure, the differential
quation for Z does not need to be solved; one only needs to calculate
he value of 𝜈 consistent with the observed values of Z (given 𝛼, 𝑃 ′( 𝑍; ̂𝛽) ,
nd X ) using Eq. (8) and the following determinant of the change-of-
ariables Jacobian: 

𝜕 𝜈𝑖,𝑗 ( 𝛼) 
𝜕𝑍 𝑖,𝑗 

||| = |𝑃 ′′( 𝑍 𝑖,𝑗 ; ̂𝛽𝑗 ) − 𝛼2 | (10)

In practice, finding the vector of parameters, { 𝛼1, j , 𝛼2 , 𝛼3, j , 𝜎}, that
aximizes the likelihood is straightforward and is reduced to a one-
imensional search over 𝛼2 by concentrating the likelihood function.
or each iteration of the numerical optimization (i.e., for each guess
f 𝛼2 ), the likelihood-maximizing values of 𝛼1, j and 𝛼3, j are recovered

hrough a least-squares regression of 
(
𝑃 ′( 𝑍; ̂𝛽) − ̂𝛼2 𝑍 

)
on market indica-

ors and X (and interactions of market indicators and X). The likelihood-
aximizing value of 𝜎2 is recovered as 1 

𝑁 

∑𝑁 

𝑖 =1 𝜈
2 
𝑖,𝑗 . This numerical sim-

licity follows from the assumption that 𝜈 is distributed normally: for
ach guess of 𝛼 , recovering the remaining parameters from a linear
11 It is clear that Z will be correlated with 𝜈 even with data coming from multiple mar- 

ets. 
12 Note that with a flexible representation of the price gradient, cross-market restric- 

ions are not needed for identification of the model. See Section 2.2 for a discussion of 

dentification. 
13 We specify a homoskedastic error but one could allow for heteroskedasticity here. 
14 If the true distribution of 𝜈 is not normal then estimation should be interpreted as 

uasi Maximum Likelihood with the standard consistency results applying. For estima- 

ion approaches without distributional assumptions on 𝜈, see Ekeland et al. (2004) and 

eckman et al. (2005) . 
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odel via maximum likelihood is well-known to be equivalent to esti-
ating via OLS. In the Appendix, we describe a GMM-estimation proce-
ure which does not require a distributional assumption on 𝜈, but which
oes have a much higher computational burden. 

Consider now the Rosen-style regression equation in Eq. (7) and the
incorrect) likelihood that is implicitly maximized in an OLS estimation
f it. This likelihood would differ from the likelihood given in Eq. (9) by
nly the Jacobian term, 𝜕 𝜈( 𝛼) 

𝜕𝑍 
, which explicitly controls for the correla-

ion between Z and 𝜈. Thus, the omission of this term in the Rosen-
tyle estimation is akin to incorrectly assuming that there is zero corre-
ation between Z and 𝜈, even though this assumption is ruled out by the
odel. 15 Therefore, the Rosen-style estimation minimizes the sum of

quared residuals while the likelihood-based estimation minimizes the
um of squared residuals plus an adjustment term that “corrects ” for the
orrelation between Z and 𝜈. 

The model presented thus far is one where Z is a scalar amenity.
owever, this estimation approach could be easily extended to esti-
ate models that consider a K -dimensional vector of amenities denoted
 = [ 𝑍 

1 , … , 𝑍 

𝐾 ] . 16 Assuming that the elements of the vector 𝝂 are dis-
ributed jointly normal with mean zero and variance-covariance matrix
, the likelihood may be formed by employing a change of variables
ithout solving the differential equations for Z . 17 The likelihood is given
y: 

Π𝑁 

𝑖 =1 𝓁 ( 𝛼, 𝚺; Z 𝑖,𝑗 , 𝑋 𝑖 ) 

where 𝓁 ( 𝛼, 𝚺; Z 𝑖,𝑗 , 𝑋 𝑖 ) = (2 𝜋) − 
𝐾 
2 |𝚺|− 1 2 exp 

{ 

− 

𝝂
′
𝑖,𝑗 Σ

−1 𝝂𝑖,𝑗 

2 

} 

||||||
𝜕( 𝜈1 𝑖,𝑗 , … , 𝜈𝐾 

𝑖,𝑗 ) 

𝜕( 𝑍 

1 
𝑖,𝑗 , … , 𝑍 

𝐾 
𝑖,𝑗 ) 

||||||
and 

𝝂𝑖,𝑗 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜈1 𝑖,𝑗 

⋮ 
𝜈𝐾 
𝑖,𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜕𝑃 ( Z 𝑖,𝑗 ; 𝛽) 

𝜕𝑍 1 𝑖,𝑗 

⋮ 
𝜕𝑃 ( Z 𝑖,𝑗 ; 𝛽) 

𝜕𝑍 𝐾 𝑖,𝑗 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
− 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝛼1 
1 ,𝑗 
⋮ 

𝛼𝐾 
1 ,𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ − 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝛼1 , 1 
2 ⋯ 𝛼1 ,𝐾 

2 
⋮ ⋱ ⋮ 

𝛼𝐾, 1 
2 ⋯ 𝛼𝐾,𝐾 

2 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎣ 
𝑍 

1 
𝑖,𝑗 

⋮ 
𝑍 

𝐾 
𝑖,𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ − 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝛼1 
3 ,𝑗 
⋮ 

𝛼𝐾 
3 ,𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ 𝑋 𝑖,𝑗 (11) 

Finally, the model presented thus far is one where the MWTP func-
ion is both linear and additively separable in the idiosyncratic shock,
. This estimation approach is also easily extended to richer specifica-
ions of the MWTP function. Conditional on having access to income,
 , this approach could be used to estimate preferences when utility is
ot quasi-linear. Likewise, this approach could be used when 𝜈 is not
dditively separable, as this approach simply requires that 𝜈 is either
dditively or multiplicatively separable. 

.2. Identification 

In this paper, we combine two sources of identifying power; we take
dvantage of the identifying power provided by the non-linearity of the
rice gradient as well as the identifying power provided by data ob-
erved across multiple markets. We begin this section with a formal
15 Note that the correctly-specified likelihood of observing P ′ ( Z, 𝛽) differs from 

q. (9) only by the multiplicative constant 1 
𝑃 ′′ ( 𝑍,𝛽) 

and, as such, would have the same 

rgmax. 
16 Multiple amenities may be combined into a single index and used to reduce the di- 

ensionality of Z . See Sieg et al. (2002) for a theoretical foundation for such an index of 

menities. 
17 By assuming that the idiosyncratic shocks are independent and that the price gradi- 

nt is not a function of other housing amenity choices one could estimate each amenity 

ecision separately. If the price gradient were a function of other amenities one could still 

stimate a given amenity decision in isolation by assuming that the MWTP functions for 

ther amenities were flat. 
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69 
tatement of single-market identification for the baseline model pre-
ented in Section 2.1 , which follows entirely from previously-established
esults. We then discuss the additional identifying power that multi-
arket data provides for this model. Throughout, we offer an intuitive
iscussion of which features of the data identify the parameters of the
WTP function with a particular emphasis on the identification of the

lope parameter of the MWTP function, 𝛼2 . 
Ekeland et al. (2004) formally establishes that a class of hedonic

odels is identified in a single market, as long as the hedonic price gra-
ient is non-linear. More specifically, the scalar, additively-separable,
uasi-linear utility function shown in Eq. 5 (consistent with the linear
illingness-to-pay function) falls within their class of identified utility

unctions. 18 Therefore, as we specify a price function with a non-linear
radient, the necessary rank condition is satisfied and Theorem 2 in
keland, Heckman, and Nesheim holds. 19 This is the key identification
esult of that paper. As the identification of Ekeland, Heckman, and
esheim guarantees identification for our case, the likelihood princi-
al then ensures that the population objective function for our model
as a unique maximizer, i.e., for any parameter vector, 

 𝛼, 𝜎) ≠ ( 𝛼∗ , 𝜎∗ ) ⇒ 𝓁( 𝛼, 𝜎|𝑍, 𝑋) ≠ 𝓁( 𝛼∗ , 𝜎∗ |𝑍, 𝑋) . 

The identification of the non-slope parameters is straightforward; the
WTP intercept ( 𝛼1 ), the coefficients on individual characteristics ( 𝛼3 ),

nd the MWTP variance ( 𝜎2 ) are identified by the average level of Z ,
he covariance between Z and X , and the variance of Z , respectively.
n a single market, the slope parameter ( 𝛼2 ) will be identified by the
ovariance between Z and nonlinear functions of X . Intuitively, a non-
inear price gradient will cause the distribution of Z to be asymmetric,
ven if the distribution of MWTP intercepts is symmetric. For example,
f the price gradient were convex in Z , low-preference households would
onsume considerably less Z than average-preference households, while
igh-preference households would consume only slightly more Z than
verage-preference households. The extent of this asymmetry will be
riven by the underlying slope of the MWTP function (a flatter slope
s associated with more asymmetry). Therefore, as X (the observable
emographic characteristics) shifts the MWTP intercept in a linear (i.e.,
ymmetric) fashion, but affects consumption of Z in a non-linear (i.e.,
symmetric) fashion, the covariance between Z and nonlinear functions
f X will identify the slope parameter. 

It is worth noting that the identification results of Ekeland
t al. (2004) do not require a distributional assumption regarding the
aste shock, 𝜈. In our case, we make the assumption that 𝜈 is distributed
ormally to facilitate simple estimation by maximum likelihood. While
ot required for identification, a distributional assumption may con-
ribute to the identification of the slope parameter. For example, if the
radient is non-linear then the distribution of Z will not be normal even
hen 𝜈 is distributed normally. As the extent of this deviation from nor-
ality will be driven by the underlying slope of the MWTP function (a
atter slope is associated with a larger deviation), the deviation aids in
he identification of the slope parameter. 

In addition to the single-market identification from the price-
radient nonlinearity, the use of multi-market data (with cross-market
estrictions) to identify the hedonic model has been well-documented
ince the 1980s (see, for example, Brown and Rosen (1982) and Mendel-
ohn (1985)). It is important to note that in the absence of any cross-
arket restrictions, i.e., when all of the parameters of the MWTP func-

ion vary by market, this is equivalent to multiple single-market cases
nd the multi-market data does not aid in identification. However, in
18 As noted in Ekeland et al. (2004) , if the MWTP function were linear in the log of 

he amenity, the model would be identified as long as the hedonic price gradient were 

onlinear in the log of the amenity. In Heckman et al. (2010) , single-market identification 

s proven for a more general class of utility functions with non-additive heterogeneity. 

hat paper also discusses the identification of non-parametric models of utility with multi- 

arket data. 
19 When Z is a vector of amenities, the necessary conditions for identification are dis- 

ussed in Nesheim (2015) and Chernozhukov et al. (2017) . 
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Table 1 

Summary statistics - property transactions. 

Variable 𝑛 = 351 , 938 

Mean Std. Dev. 

Price 353,745.04 192,444.00 

Age 30.30 22.45 

Lot size (sq. ft) 7,172.98 8,119.14 

Square footage 1,716.27 672.44 

Number of bathrooms 2.12 0.72 

Number of bedrooms 3.21 0.90 

Property crime rate 1,744.63 666.17 

Violent crime rate 422.53 186.03 

Price is expressed in constant 2000 dollars. The 

crime; rates are per 100,000 residents. 
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20 Approximately fifty-five percent of sales are the only observed sale for the property. 
21 Results are not sensitive to whether we drop or Winsorize observations. 
22 To maintain a fairly homogenous sample (i.e., properties that would be competing in 

the same housing market), we make the additional sample cuts. We drop houses where 

“year built ” is less than 1850, “lot size ” is zero or greater than three acres, “square footage ”

is zero or is greater than 10,000 square feet, total “number of bathrooms ” is greater than 

ten, total “number of bedrooms ” is greater than ten, total “number of rooms ” is greater 
he presence of cross-market restrictions, the use of multi-market data
rovides a number of additional sources of identifying variation. 

The first source of identifying variation is the sensitivity of market-
pecific averages of Z to differences in price gradients across markets.
nder the assumption of a common-across-markets MWTP function, this

elationship will identify the slope of the MWTP function. For example,
f average consumption of Z is considerably smaller in markets with
igher implicit prices of Z , a relatively steep MWTP slope will be identi-
ed. Under a more flexible specification with market-specific intercepts

n the MWTP function, (e.g., the specification in our empirical appli-
ation where the intercepts of the MWTP function are allowed to vary
cross geographic markets), the market-specific, average consumption
f Z will identify { 𝛼1 ,𝑗 } 𝐽 𝑗=1 and will no longer contribute to the identifi-
ation of the slope of MWTP. 

The second source of identifying variation is the sensitivity of
arket-specific covariances of Z and X to differences in price gradients

cross markets. For example, when 𝛼2 is large, the cross-market varia-
ion in the covariance of Z and X will be relatively small, all else equal.
nder a more flexible specification where the coefficients on X are al-

owed to vary across markets, cross-market differences in the covariance
etween Z and X will identify { 𝛼3 ,𝑗 } 𝐽 𝑗=1 and will no longer contribute to
he identification of the slope of MWTP. 

The third source of identifying variation is the sensitivity of market-
pecific variances of Z to differences in price gradients across markets.
ntuitively, the market-specific variances of Z (conditional on X ) are
etermined by the market-specific price gradients. Importantly, as the
ross-market differences in these variances will be intensified by the un-
erlying slope of the MWTP function (a flatter slope is associated with
 higher degree of cross-market differences in the variance of Z ), cross-
arket differences in the variance of Z will aid in the identification of

he slope parameter. Under a more flexible specification where 𝜎 is al-
owed to vary across markets, cross-market differences in the variance of
 will identify { 𝜎𝑗 } 𝐽 𝑗=1 and will no longer contribute to the identification
f the slope of MWTP. 

The final sources of identifying variation are the sensitivity of the
arket-specific covariances of Z with nonlinear functions of X and the

ensitivity of market-specific higher-order moments of Z to differences
n the price gradients across markets. Following the intuition laid out
or the single-market case, non-linear, market-specific price gradients
ill result in a nonlinear relationship between Z and X with the market-

pecific level of this non-linearity decreasing in the underlying slope
f the MWTP function. Thus, in the multi-market case, the asymmetry
ifferences across markets will aid in the identification of the slope pa-
ameter. A similar logic applies to how the slope of the MWTP function
ffects variation in market-specific deviations of Z from normality. 

. Data 

To demonstrate the easy applicability of this estimation approach,
e apply it to valuing the willingness to pay to avoid violent crime in the
an Francisco Metropolitan Area over the period 1994 to 2000. Further
etails and results of this application are discussed in Sections 4 and 5 .

In the first stage of estimation, we nonparametrically recover the
edonic price function for each year of our sample. In the second stage
f estimation, we recover the structural parameters of the linear MWTP
unction, allowing MWTP to vary with demographic characteristics. Fi-
ally, to demonstrate the policy implications of various hedonic estima-
ors, we consider the non-marginal policy analysis of observed changes
n crime for the one year period of 1999 to 2000. 

To estimate these specifications, we employ a varied set of data from
ultiple sources. These data and our sample cuts are discussed below. 

.1. Property transactions data 

The real-estate transactions data that we employ cover six coun-
ies of the San Francisco Bay Area (Alameda, Contra Costa, Marin, San
t

70 
rancisco, San Mateo, and Santa Clara) over the period 1994 to 2000.
his dataset (used under a licensing agreement with DataQuick, Inc.)

ncludes dates, prices, loan amounts, and buyers’, sellers’, and lenders’
ames for all transactions. In addition, for the final observed transaction
f each single-family house, the dataset includes housing characteristics
uch as exact street address, square footage, year built, lot size, number
f bedrooms, and number of bathrooms. 

Additional data cuts are made in order to deal with the fact that
ata-Quick only reports housing characteristics at the time of the most

ecent assessment, but we need to use housing characteristics from all
ransactions as controls in our hedonic price regressions. 20 First, to con-
rol for land sales or total re-builds, we drop all transactions where “year
uilt ” is missing or later than the observed transaction date. Second, to
ontrol for major improvements or degradations, we drop any property
ith an observed average appreciation or depreciation rate exceeding

he county- and year- specific mean price change by more than fifty per-
entage points (in either direction). Additionally, we drop any property
hat moves more than forty percentage points (in either direction) be-
ween transactions in the overall county- and year- specific distributions
f price. We drop transactions where the price is missing or zero and,
fter using the consumer price index to convert all transaction prices
nto 2000 dollars, we drop one percent of observations from each tail of
he price distribution to minimize the effect of outliers. 21 As we merge
he crime data using the property’s geographic coordinates, we drop
roperties where latitude and longitude are missing. Finally, we drop
ouses with more than three observed transactions over the seven-year
ample or more than one sale within a given year. 22 Table 1 reports the
ummary statistics for the property transactions data. 

.2. Household demographic data 

For our demographic characteristics, we use information on the race
nd income of buyers recorded on mortgage applications and published
n accordance with the Home Mortgage Disclosure Act (HMDA) of 1975.
he HMDA data also describe the mortgage lender’s name, the loan
mount, the year, and the property’s census tract. As the variables of
ender name, loan amount, year, and census tract are also available in
he DataQuick data, we are able to merge the buyer characteristics data
ith the property transactions data using the algorithm described in
han fifteen, and “number of stories ” is greater than three. 
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Table 2 

Summary statistics - buyers (Full- and 1999- Samples). 

Variable Full sample 1999 sample 

𝑛 = 204 , 953 𝑛 = 37 , 691 

Mean Std. dev. Mean Std. dev. 

Price 362,383.67 192,748.52 378,956.60 197,668.52 

Violent crime rate 416.78 171.10 359.53 138.95 

Income 112,452.41 108,823.27 112,274.03 90,638.58 

White 0.63 0.48 0.61 0.49 

Asian 0.24 0.42 0.25 0.43 

Black 0.03 0.18 0.03 0.18 

Hispanic 0.10 0.30 0.11 0.31 

Prices and incomes are expressed in constant 2000 dollars. The violent crime 

rate is per 100,000 residents. 

Fig. 1. Locations of crime-reporting cities within the metro area. 
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𝑃  
ayer et al. (2016) . 23 We drop all households where either race or in-
ome is missing. 

Table 2 reports the summary statistics for the sample of buyers in
oth the full sample and in the restricted 1999-only sample. 24 This re-
tricted sample will be used in the policy analysis that demonstrates the
mplications of valuing non-marginal changes in violent crime rates. 

.3. Violent crime data 

The violent crime rate that we employ comes from the RAND Cali-
ornia database and is defined as the number of incidents per 100,000
esidents. 25 We consider violent crime as it is a relatively homogeneous
easure of crime. Violent crime is reported for each of the 80 cities in

he San Francisco Metropolitan Area for each year of our data. Fig. 1
llustrates the locations of these cities. For our analysis, we impute a
iolent crime rate for each individual house using an inverse distance-
quared weighted average of the crime rate in each city. 26 As a control in
ur hedonic regressions, we also create an analogous measure of prop-
rty crime rates from the RAND California database. 27 To mitigate the
23 Using this algorithm, we are able to uniquely match approximately sixty-six percent 

f all housing transactions to buyers in the uncleaned HMDA dataset (prior to cuts on race 

nd income). The characteristics of the final sample of buyers and houses is remarkably 

lose to those found in IPUMS samples. See Bayer et. al. (2016) for further discussion. 
24 Note that these second-stage summary statistics additionally reflect the fact that we 

rim one percent from the tails of the nonparametrically-estimated gradients within our 

stimation routine. 
25 In the data, violent crime is defined as “crimes against people, including homicide, 

orcible rape, robbery, and aggravated assault. ”
26 Distance is computed using the Great Circle estimator, geographic coordinates of city 

entroids, and geographic coordinates of each house. 
27 Property crime is defined as “crimes against property, including burglary and motor 

ehicle theft. ” We use the property crime rate as a control in our hedonic estimation and 

ocus attention on violent crimes in our valuation exercise, as violent crimes are less likely 

o be subject to systematic under-reporting ( Gibbons, 2004 ). 
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ffect of outliers, we drop one percent from each tail of the distribution
f violent crime. 28 Table 1 provides summary statistics for both violent
rime and property crime at the level of the house. Table 2 provides
ummary statistics for violent crime at the level of the buyer. 

We see a significant amount of variation (both across houses and
hrough time) in our key variable of interest, violent crime. Figs. 2 and
 illustrate the distribution of house-specific violent crime rates and the
ime-trend of mean house-specific violent crime rates, respectively. The
ates are given by incidents per 100, 000 local residents. The declining
rend observed in the San Francisco Metropolitan Area is consistent with
he decreases in violent crime observed in most of the US over the same
eriod. 

. Results 

.1. The hedonic price function 

In this subsection, we discuss the results from the estimation of the
ollowing hedonic price function: 

 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) = 𝐻 

′
𝑖,𝑡 𝛽

𝐻 

𝑡 + 𝑓 𝑡 ( 𝑍 𝑖,𝑡 ; 𝛽𝑡 ) + 𝜖𝑖,𝑡 (12)

o identify the causal impact of Z on price, we control for observed
ousing attributes as well as unobserved neighborhood amenities. In
q. (12) , the vector H i, t includes quadratic functions in each of the
ousing attributes (number of bedrooms, number of bathrooms, square
ootage, lot size, and age) as well as a set of neighborhood fixed effects
t the level of the Census tract. 29 These fixed effects control for fixed
menities at the neighborhood level, which may include such things
s characteristics of neighbors or of their houses, local school qual-
ty, and/or proximity to shopping, restaurants, highways, or other local
menities. Kuminoff et al. (2010) shows that including spatial fixed-
ffects is the preferred way to deal with (potentially correlated) unob-
ervables at the neighborhood level. In this application, we are able to
ontrol for these neighborhood unobservables at the relatively fine level
f the Census tract, while our amenity of interest (the violent crime rate)
s specified at the level of the house. 30 We note, however, that in the
resence of within-tract variation in unobserved amenities (not captured
y observable house-level attributes) that is correlated with crime, omit-
ed variable bias is a potential concern. 

To mitigate against bias coming from functional-form misspecifi-
ation, we model f t ( Z ; 𝛽) as a flexible function of Z which we re-
over through local-polynomial estimation. As markets are defined by
ears in this application, we now employ the subscript t and estimate
q. (12) separately for each year. 

In order to estimate the function f t ( Z ; 𝛽) using local polynomial meth-
ds, we must first control for the variation in price due to other housing
haracteristics, H ′ 𝛽H . Following Robinson (1988), we obtain an estimate
f 𝛽H , allowing us to move 𝐻 

′𝛽𝐻 to the left side of Eq. (12) . 31 We then
pecify the function f t ( Z ; 𝛽) as being locally quadratic (around each ob-
erved value of Z ): 32 , 33 

 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) − 𝐻 

′
𝑖,𝑡 𝛽

𝐻 

𝑡 = 𝛽0 ,𝑖 ∗ ,𝑡 + 𝛽1 ,𝑖 ∗ ,𝑡 𝑍 𝑖,𝑡 + 𝛽2 ,𝑖 ∗ ,𝑡 𝑍 

2 
𝑖,𝑡 + 𝜖𝑖,𝑡 (13)

here i ∗ highlights the fact that the 𝛽 coefficients hold locally for each
bserved value of Z in the data. In practice, estimates of the hedonic
radient, i.e., 𝛽1 ,𝑖 ∗ ,𝑡 + 2 ̂𝛽2 ,𝑖 ∗ ,𝑡 𝑍 𝑖,𝑡 , are recovered for all 204,953 observed
28 Results are not sensitive to whether we drop or Winsorize observations. 
29 According the U.S. Census Bureau, Census tracts are “designed to be relatively ho- 

ogeneous units with respect to population characteristics, economic status, and living 

onditions ” and contain approximately 4000 residents. 
30 There are 789 Census tracts in our data. 
31 See Clapp (2003) for another example of using the Robinson two-step method to es- 

imate hedonic price functions. 
32 A benefit of using a locally quadratic approach here, as opposed to a locally linear 

ne, is that we use the second derivative in our second-stage estimation. 
33 There is a slight abuse of notation in Eq. (13) , as 𝐻 

′𝛽𝐻 will not equal H ′ 𝛽H in finite 

amples. The error is more accurately described as 𝜖𝑖,𝑡 + ( 𝐻 

′
𝑖,𝑡 𝛽

𝐻 
𝑡 − 𝐻 

′
𝑖,𝑡 𝛽

𝐻 
𝑡 ) . 
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Fig. 2. Overall distribution of violent crime rates. 

Fig. 3. Time variation in mean violent crime rates. 
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alues of Z in the buyer data. This is in contrast to a fully parametric
stimation procedure where a single 𝜷 would be recovered for a given
ear. 

We estimate Eq. (13) using a Weighted Least Squares routine with
eights (as one moves further from the point of evaluation, 𝜒) given by

he diagonal of the Gaussian kernel: 

 ℎ ( 𝑍 𝑖,𝑡 − 𝜒) = 

1 
ℎ ̂𝜎

√
2 𝜋

𝑒𝑥𝑝 

{ 

− 

1 
2 

( 

𝑍 𝑖,𝑡 − 𝜒

ℎ ̂𝜎𝑍 

) 2 } 

(14)
𝑍 

72 
here h represents the chosen kernel bandwidth and 𝜎̂𝑍 is the standard
eviation of Z . 

Our selection of bandwidth seeks to allow for maximum flexibility in
he function f t ( · ), while ensuring that the functions are consistent with
tility maximization of homebuyers in the marketplace. In other words,
e smooth the function up until the point that all observations exhibit
 negative value for the hedonic gradient (the first derivative of price)



K.C. Bishop and C. Timmins Journal of Urban Economics 109 (2019) 66–83 

Fig. 4. Results - housing price functions by year, P t ( Z i, t ). 
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nd a positive value for the second derivatives. 34 In practice, we set the
andwidth equal to 2.15 times the standard deviation of violent crime.
t this level of smoothing, none of the sample exhibits a positive gradi-
nt or a negative second derivative. 35 Additional details of Robinson’s
stimator may be found in the Appendix. 

Results are reported in Figs. 4 , 5 , and 6 , which show the price func-
ion, the hedonic gradient (the derivative of price), and the derivative
f the gradient (the second derivative of price), respectively. 36 Corre-
ponding figures with 99% confidence intervals are shown in Figs. 9,
0 , and 11 in the Appendix. The year-specific price functions shown in
ig. 4 plot the rental equivalent of housing price as a function of the
iolent crime rate. 37 Consistent with theory, these functions lie in the
rst quadrant (positive housing prices) and slope downward (a higher
iolent crime rate reduces price). The year-specific gradients shown in
ig. 5 plot the derivative of housing price with respect to violent crime
s a function of the violent crime rate. The derivative of price can be
nterpreted as the implicit price of violent crime and is the simple mea-
ure of willingness to pay which is often found in the literature. These
radients lie in the fourth quadrant (the implicit price of violent crime is
egative or safety is a “good ”) and slope upward. Finally, Fig. 6 plots the
econd derivative of price w.r.t. violent crime as a function of the violent
rime rate. This figure is useful in seeing both how much heterogene-
ty exists across years and how much a simple quadratic specification
ould miss (by forcing these curves to be perfectly horizontal). 
34 Note that this second-order condition is stricter than necessary. To be consistent with 

tility maximization, the second derivative need only be greater than the (negative) slope 

f the MWTP function. 
35 At a tighter bandwidth of 2.1 times the standard deviation of violent crime, there 

egin to be violations of the second-derivative condition (0.0002 of the sample). 
36 For sake of brevity, the 𝛽H coefficients (including 788 tract fixed effects), which are 

ot used in estimation, are not reported. They are available upon request. 
37 The rental equivalent is taken to be 0.05 of the housing sales price, following the re- 

ated literature that builds off of Poterba (1984) in expressing housing prices as annualized 

mputed rents. 
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.2. The marginal willingness to pay function 

In this subsection, we report the results from the likelihood-based
pproach for recovering estimates of the MWTP function using the first-
tage hedonic price function estimates and the available data on individ-
al home buyers. With the non-parametric specification for the hedonic
rice function, a closed-form solution for Z cannot be recovered so we
mploy a change of variables from Z to 𝜈. We specify a linear MWTP
unction and allow the intercept of the MWTP function to vary by mar-
et (i.e., by year) by including a set of year dummies in our estimation. 38 

his implies: 

 

′( 𝑍 𝑖,𝑡 ; 𝛽𝑡 ) = 𝛼1 ,𝑡 + 𝛼2 𝑍 𝑖,𝑡 + 𝑋 

′
𝑖 𝛼3 + 𝜈𝑖,𝑡 (15)

here: 

𝑖,𝑡 ∼ 𝑁(0 , 𝜎2 ) (16)

nd X i is a vector comprised of income (in thousands of 2000 dollars)
nd a vector of race dummies (Asian-Pacific Islander, black, Hispanic,
nd white). 39 As the second stage relies on first-stage estimates, stan-
ard errors are bootstrapped by taking 250 replications of the property
ransactions dataset and estimating both the first and second stages for
ach replication. An alternative would be to jointly estimate the two
tages. While this would increase statistical efficiency, it would greatly
ncrease the computational burden. 40 
38 We can also allow the coefficients on demographic characteristics to vary by year 

ithout additional variation or assumptions; employing this specification has almost no 

mpact on results and returns an estimated slope coefficient of −0 . 1571 . If one were to rely 

n variation in the price function alone, one could additionally allow the slope coefficient 

nd the error variance to vary by year, returning to the single-market setting. 
39 White is the excluded race in our estimation routine. 
40 To jointly estimate using Maximum Likelihood would also require making a distribu- 

ional assumption for 𝜖. 
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Fig. 5. Results - hedonic gradients by year, 𝑃 ′𝑡 ( 𝑍 𝑖,𝑡 ) . 

Fig. 6. Results - second derivatives of price by year, 𝑃 ′′𝑡 ( 𝑍 𝑖,𝑡 ) . 
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The first column of Table 3 reports these results. 41 First, consider the
oefficient on violent crime, 𝛼 , which reveals the amount by which the
2 

41 We exclude buyers whose chosen level of crime falls within the first or within the 

inety-ninth percentile of violent crime from the first-stage data, as the gradients are esti- 

ated non-parametrically and these observations lie close to the boundaries. Importantly, 

i  

h

f

74 
ousehold’s MWTP to avoid violent crime changes with an increase in
his disamenity. Intuitively, this coefficient should be negative, indicat-
ng that the MWTP to avoid violent crime increases as the rate of violent
owever, the main parameter of interest (the slope of the MWTP function) only changes 

rom -0.1604 to -0.1793 without these omissions. 
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Table 3 

MWTP function estimates. 

n = 204,953 

Likelihood-based Rosen Horizontal 

Violent Crime -0.16 0.02 –

(0.02) (0.0008) –

Income (/1000) -0.03 -3.37 -0.003 

(0.005) (0.0001) (0.0003) 

Asian 4.09 -0.11 0.24 

(0.49) (0.01) (0.03) 

Black 24.69 0.05 2.10 

(2.56) (0.04) (0.13) 

Hispanic 12.54 0.06 1.10 

(1.35) (0.02) (0.07) 

Constant 73.64 -14.79 -7.44 

(8.93) (0.85) (0.73) 

1995 dummy -9.38 -3.07 -3.59 

(1.20) (1.05) (1.04) 

1996 dummy -18.69 -3.90 -5.13 

(1.87) (1.14) (1.14) 

1997 dummy -15.29 -3.27 -4.27 

(1.45) (0.99) (0.98) 

1998 dummy -24.86 -10.08 -11.31 

(1.94) (1.16) (1.16) 

1999 dummy -41.25 -15.79 -17.91 

(2.72) (1.11) (1.11) 

2000 dummy -48.40 -22.85 -24.98 

(3.36) (1.45) (1.47) 

𝜎𝜈 27.87 – –

(2.82) – –

These are the estimated coefficients from Eq. 7 ; All are signif- 

icant at the 1% level of significance. 
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42 Note that it is difficult to compare goodness of fit across the three approaches, as the 

Rosen and Horizontal approaches seek to fit the price gradient, P ( Z ), while our approach 

seeks to fit the choice of amenity, Z . Furthermore, all the models fail to yield closed-form 

solutions for Z , which makes constructing a standard R 2 infeasible. However, one can 

calculate the likelihood of observing the data given the parameters for all three models. 

As such, we can calculate a McFadden Pseudo R 2 equal to 1 − 𝑙𝑜𝑔 𝓁 ( 𝛼,𝜎) 
𝑙𝑜𝑔 𝓁( 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ) 

. The resulting 

measures for the Likelihood-based, Rosen, and Horizontal are 0.1983, 0.1478, and 0.1375, 

respectively. 
43 Levitt (2004) discusses six factors that he argues were not responsible for these de- 

clines, including economic growth and reduced unemployment, shifting age and racial 

demographics, changes in policing strategies, changes in gun control laws and laws con- 

trolling concealed weapons, and changes in capital punishment. He argues instead that 

there is a strong case to be made for the role of increasing size of the police force, increased 

incarceration rates, declines in the crack epidemic, and the legalization of abortion twenty 

years prior. The relative importance of each of these factors is still a contentious topic. 

See, for example, Blumstein and Wallman (2006) . 
44 
rime increases (consistent with a demand curve for public safety that
s downward sloping). We find this to be the case; each additional inci-
ent per 100,000 residents raises MWTP to avoid violent crime by 16.04
ents. As we show in Section 5 , this has important implications for the
alue ascribed to large reductions in violent crime rates like those wit-
essed over the period of our sample. 

Looking at the remaining coefficient estimates, an increase in income
f $1,000 per year increases MWTP to avoid violent crime by 2.95 cents
consistent with public safety being a normal good). Considering differ-
nces in MWTP by race, the excluded group (whites) has the highest
ean MWTP to avoid violent crime. Results suggests that Asian-Pacific

slanders have a slightly lower mean MWTP (as indicated by their pos-
tive intercept shift of $4.10). Blacks have the lowest mean MWTP to
void violent crime, followed by Hispanics. 

For the sake of comparison, the second column of Table 3 reports
he results from the traditional Rosen-estimation approach. These results
uggest that increases in violent crime reduce the MWTP to avoid violent
rime (indicating that the demand curve for public safety is upward
loping). This is exactly the direction of bias suggested in both Bartik
1987) and Epple (1987) and leads to upwardly-biased estimates of the
elfare associated with non-marginal reductions in violent crime (which
e show in Section 5 ). 

As the endogeneity bias associated with traditional Rosen approach
as been well-documented in the literature, a more natural comparison
f our results may be with the Horizontal MWTP. This approach assigns
 constant willingness to pay to each household equal to the slope of the
edonic price function at their observed housing choice. As the utility
unction is assumed to be linear in Z (i.e., the MWTP function is constant
n Z ), this approach trivially solves the endogeneity problem by assum-
ng that the MWTP function doesn’t depend on Z . To do this, we simply
un the Rosen second-stage regression restricting 𝛼2 = 0 . These results
re shown in the third column of Table 3 . These results are strikingly dif-
erent from those presented in the first column. While the coefficients
n income and race are of the same sign, their magnitudes are much
maller. This indicates that income and race do not appear to play an
h

75 
conomically significant role in these estimates. The economic implica-
ions of assuming a horizontal willingness-to-pay will become clear in
he analyses in Section 5 . 42 

. Measuring the welfare implications of a non-marginal change 

n violent crime rates 

As is clear in our data description, the San Francisco Metropoli-
an Area experienced large and persistent reductions in average violent
rime rates over the course of our sample period. Similar reductions
ave been observed in numerous other cities across the US. Out of the
5 cities that he considers, Levitt (2004) ranks San Francisco 12th in
erms of the size of the reduction in homicides experienced between
991 and 2001. This change in the violent crime rate represents a sig-
ificant improvement on average and is, importantly, non-marginal. 43 

There is a large and growing literature aimed at valuing the bene-
ts of crime reductions (with, for example, the goal of conducting cost-
enefit analyses of police-force expansions). This literature was recently
urveyed by Heaton (2010) . He notes that the property value hedonic
echnique is valuable for recovering the intangible costs of crime (e.g.,
ost quality of life for fear of victimization or effective loss of public
pace). Such intangibles are likely to be particularly important for mea-
uring the costs of violent crime (a point emphasized by Linden and
ockoff (2008) with respect to sexual offenses). 

For the welfare analyses that follow, we consider the set of all house-
olds who purchased a house in 1999 (summary statistics describing
hese households are given in Table 2 ). We then measure the value of the
rime changes that these households actually experienced between 1999
nd 2000. It is highly likely that these households still occupy the same
esidence in 2000 and, as we show in this section, the changes that oc-
urred over this year were substantial enough that proper identification
f the MWTP function becomes important in measuring their change in
elfare. In particular, Fig. 7 illustrates the distribution of changes in vi-
lent crime rates experienced by this set of households. The 1999 data
llow us to consider welfare changes associated with both reductions
nd increases in crime; approximately two thirds of these households
xperienced reductions in violent crime during this period while the re-
aining one third experienced increases in violent crime. 44 

.1. Welfare analysis using our main specification 

In Table 4 , we report valuations based on the model presented in
ection 2 and the three different estimation strategies discussed in Sec-
ion 4: (i) the likelihood-based approach presented in this paper, (ii)
osen, and (iii) Horizontal MWTP. The value associated with a change

n the violent crime rate is calculated as the area of under the MWTP
unction over the width of the experienced change in violent crime. For
he Likelihood-based and Rosen strategies, this area will approximate a
ight trapezoid. For the Horizontal MWTP approach, this area will be
 rectangle. See Fig. 8 for illustrations. We report results separately for
The range of one-year changes in crime is -302.4770 to +616.5721. Only 0.0097 of 

ouseholds experience a change in crime greater than 250 in absolute value. 
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Fig. 7. Distribution of one-year crime rate changes for 1999 buyers. 

Table 4 

WTP for non-marginal changes in violent crime. 

Buyers with reductions Buyers with increases 

( 𝑛 = 24 , 791 ) ( 𝑛 = 12 , 900 ) 

Average 25th % 75th % Average 25th % 75th % 

WTP WTP WTP WTP WTP WTP 

Likelihood based 652 294 917 -1710 -1828 -290 

Rosen 878 309 1113 -1147 -1501 -281 

Horizontal 858 308 1099 -1194 -1537 -282 

These are estimates of willingness to pay (in year-2000 dollars) for the observed 1999; changes in crime. Welfare estimates are constructed using estimates of the 

model presented; in Eq. 5 . 
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a  
he two-thirds of buyers who experienced a reduction in their violent
rime rate and for the remaining one-third of buyers who experienced
n increase in Table 11 . 45 

The bias from improperly accounting for the effect of a non-marginal
hange in violent crime on MWTP is evident. Consider first the case of
rime reductions. The Rosen estimation yields estimates of the aver-
ge WTP for observed reductions that are 1.35 times greater than our
odel, implying a thirty-five percent upward bias. Results of the Hor-

zontal specification are similar; this specification yields estimates that
re 1.32 times greater, implying a thirty-two percent upward bias. The
irection of the bias is reversed when we consider increases in the rates
f violent crime. Here, the alternative estimation approaches yield esti-
ates of average WTP for observed crime reductions that are only 0.67

nd 0.70, respectively, of our Likelihood-Based estimate. These differ-
nces are far from trivial and would have important impacts on any
ost-benefit analysis. 

.2. Welfare analyses under alternative models 

.2.1. Allowing for non-quasilinear utility 

In Section 2.1 , we present a quasi-linear model where numeraire
onsumption, C , enters the utility function in a linear and additively-
45 In the calculations for buyers experiencing a decrease in violent crime, we restrict the 

arginal willingness to pay curve to be non-positive. This has little effect on the welfare 

mplications; the average willingness to pay without this restriction is 638.02. 
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eparable manner. A benefit of this specification is that data on income
re not required for estimation. 46 Here we present an alternative model
here numeraire consumption enters utility non-linearly. Specifically,

t enters with a quadratic and with an interaction with Z , allowing both
he intercept and the slope of the MWTP function to vary with household
udget constraints. We specify household i ’s utility in year t as: 

 = 𝛼0 ,𝑡 + 𝛼1 ,𝑡 𝑍 𝑖,𝑡 + 

1 
2 

𝛼2 𝑍 

2 
𝑖,𝑡 + 𝛼3 𝑋 𝑖,𝑡 𝑍 𝑖,𝑡 + 𝜈𝑖,𝑡 𝑍 𝑖,𝑡 + 𝑔( 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ) 

+ 

(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
+ 𝛼4 𝑍 𝑖,𝑡 

(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
+ 

1 
2 

𝛼5 
(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)2 
(17) 

hich yields the following first-order condition for Z : 

1 ,𝑡 + 𝛼2 𝑍 𝑖,𝑡 + 𝛼3 𝑋 𝑖,𝑡 + 𝜈𝑖,𝑡 + 𝛼4 
(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
− 𝑃 ′( 𝑍 𝑖,𝑡 ; 𝛽𝑡 ) 

(
1 + 𝛼4 𝑍 𝑖,𝑡 + 𝛼5 

(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
= 0 (18)

Note that this specification yields a closed-form solution for 𝜈 and
he likelihood may be formed using a change of variables from Z to 𝜈
s described in Section 2 . 47 Likelihood-based estimation results of this
46 We do allow income to be one of the variables in X . However, this method of incor- 

orating income in the MWTP function is not derived from first principles. 
47 In this case, finding the vector of parameters that maximizes the likelihood is still 

traightforward, but is now reduced to a three-dimensional numerical optimization prob- 

em (versus the single parameter search described in Section 2.1 ). Specifically, concentrat- 
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Fig. 8. Illustrations of WTP for non-marginal 

changes in violent crime. 

Fig. 9. Results - price functions by year, P t ( Z ). 
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on-Quasilinear Utility model may be found in Table 5 alongside the
orresponding estimates from a Rosen estimation and a Horizontal esti-
ation of this same model. 
ng the likelihood function allows for a search over 𝛼2 , 𝛼4 and 𝛼5 where, for each guess 

f 𝛼2 , 𝛼4 and 𝛼5 , the likelihood-maximizing values of the remaining 𝛼 parameters are re- 

overed through a least-squares regression and the likelihood-maximizing value of 𝜎2 is 

ecovered as 1 
𝑁 

∑𝑁 
𝑖 =1 𝜈

2 
𝑖,𝑡 . 
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77 
As before, we report results separately for buyers with reductions
nd for buyers with increases. By definition, the Horizontal estimates
re identical to those in Table 4 , as the slope is set to zero in both cases.
he results from the Rosen-based estimation approach (which simply
inimizes the sum of squared residuals, 

∑𝑁 

𝑖 =1 𝜈
2 
𝑖,𝑡 ) are almost identical

o those in Table 4 and still imply an upward-sloping MWTP function.
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Fig. 10. Results - hedonic gradients by year, 𝑃 ′𝑡 ( 𝑍) . 

Fig. 11. Results - second derivatives of price by year, 𝑃 ′′𝑡 ( 𝑍) . 
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he Likelihood-Based results imply a downward-sloping MWTP function
ith similar welfare effects to those reported in Table 4 . 48 
48 Not surprisingly, the estimated income elasticities are different. The mean and median 

ncome elasticities in the baseline model, which simply allows income to shift the MWTP 

ntercept, are 0.23 and 0.17, respectively. The corresponding elasticities from the Non- 

uasilinear Utility model, which allows income to affect behavior through the budget 

onstraint, are 0.51 and 0.38, respectively. 
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.2.2. Allowing for non-separable preference heterogeneity in MWTP 

In our main empirical specification, the unobservable preference
hock, 𝜈, enters the MWTP function in an additively-separable manner.
ere were present an alternative model in which MWTP is multiplica-

ively separable in 𝜈 by specifying household i ’s utility in year t as: 49 
49 This utility function is analyzed in Heckman et al. (2010) . 
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Table 5 

WTP for non-marginal changes in violent crime with non-quasilinear utility. 

Buyers with reductions Buyers with increases 

( 𝑛 = 24 , 791 ) ( 𝑛 = 12 , 900 ) 

Average 25th % 75th % Average 25th % 75th % 

WTP WTP WTP WTP WTP WTP 

Likelihood based 634 291 900 -1780 -1853 -291 

Rosen 878 309 1113 -1148 -1502 -281 

Horizontal 858 308 1099 -1194 -1537 -282 

These are estimates of willingness to pay (in year-2000 dollars) for the observed 

1999; changes in crime. Welfare estimates are constructed using estimates of the 

model presented in Eq. 17 . 

Table 6 

WTP for non-marginal changes in violent crime from the model with non-separable 

preference heterogeneity. 

Buyers with reductions Buyers with increases 

( 𝑛 = 24 , 791 ) ( 𝑛 = 12 , 900 ) 

Average 25th % 75th % Average 25th % 75th % 

WTP WTP WTP WTP WTP WTP 

Likelihood based 648 290 877 -2276 -2250 -303 

Rosen 893 311 1128 -1125 -1472 -279 

Horizontal 858 308 1099 -1194 -1537 -282 

These are estimates of willingness to pay (in year-2000 dollars) for the observed 

1999; changes in crime. Welfare estimates are constructed using estimates of the 

model presented in Eq. 19 . 
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 = 

−1 
𝛼2 + 1 

𝑍 

𝛼2 +1 
𝑖,𝑡 𝑒 ( 𝛼1 ,𝑡 + 𝛼3 𝑋 𝑖,𝑡 ) 𝜈𝑖,𝑡 + 𝑔( 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ) + 

(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
(19) 

hich yields the following first-order condition for Z : 

 𝑍 

𝛼2 
𝑖,𝑡 𝑒 

( 𝛼1 ,𝑡 + 𝛼3 𝑋 𝑖,𝑡 ) 𝜈𝑖,𝑡 − 𝑃 ′( 𝑍 𝑖,𝑡 ; 𝛽𝑡 ) = 0 (20)

here 𝜈 is no longer additively separable. This specification yields a
onstant elasticity of 𝛼2 in the MWTP function, as opposed to our main
mpirical specification which yields a constant slope. 

Note that our likelihood-based approach requires only separability in
; the preference shock may still be isolated in Eq. 20 and the likelihood
ay be formed using a change of variables from Z to 𝜈. 50 Likelihood-

ased estimation results of this Non-Separable Preference Heterogeneity
odel may be found in Table 6 alongside the corresponding estimates

rom a Rosen estimation and a Horizontal estimation of this model. 51 

As before, the Horizontal estimates are identical to those in Table 4 ,
s the slope is set to zero in both cases. The results from the Rosen-
ased estimation approach (which simply minimizes the sum of squared
esiduals, 

∑𝑁 

𝑖 =1 log ( 𝜈𝑖,𝑡 ) 2 ) are similar to those in Table 4 and still imply
n upward-sloping MWTP function. The Likelihood-Based results im-
ly a downward-sloping MWTP function with similar welfare effects to
hose reported in Table 4 for buyers with reductions. The absolute value
f WTP is larger for buyers with increases under Non-Separable Prefer-
nce Heterogeneity, due to the fact that the constant elasticity leads to a
50 Given this form of utility, an obvious assumption would be for 𝜈 to be distributed log- 

ormally, as the support should be positive. This is equivalent to working directly with 

og ( 𝜈), which is normally distributed. Finding the vector of parameters that maximizes the 

ikelihood is still straightforward and reduces to a single-dimensional optimization prob- 

em. Specifically, concentrating the likelihood function allows for a search over 𝛼2 where, 

or each guess of 𝛼2 , the likelihood-maximizing values of the remaining 𝛼 parameters are 

ecovered through a least-squares regression and the likelihood-maximizing value of 𝜎2 is 

ecovered as 1 
𝑁 

∑𝑁 
𝑖 =1 ( 𝑙𝑜𝑔( 𝜈𝑖,𝑡 )) 2 . 

51 As we are effectively working with log ( P ′ ( Z ; 𝛽)), parameter estimates are somewhat 

ensitive to the inclusion of observations with P ′ ( Z ; 𝛽) close to zero. For this reason, we 

rim 2.5% of observations from the tails in estimation. Note that this does not drop any 

bservations used in the welfare calculations, as no observed values of the 1999 price 

radient lie in that range. 
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oncave MWTP function (which places a relatively larger value on large
ncreases in crime). 

.3. Welfare analyses using preference-Inversion methods 

For the sake of completeness, we now consider a well-known al-
ernative approach to recovering the MWTP function. The preference-
nversion method of Bajari and Benkard (2005) offers an alternative
ramework under which to recover the MWTP function. This framework
llows the researcher to altogether avoid estimation in the second stage
y inverting first-stage estimates of the hedonic gradient. The opportu-
ity for this inversion comes entirely from assumed restrictions on the
unctional form of the utility function. Given these assumed restrictions,
 single observed consumption decision of Z can be analytically mapped
via inversion) into a unique MWTP function for each household. 

A simple version of this inversion is the Horizontal approach dis-
ussed in Section 4 , where it is assumed that MWTP slope is zero. In
his case, each household’s observed consumption of Z may be mapped
nto a unique MWTP intercept without estimation, as the intercept is
imply given by the value of the price gradient at the household’s point
f consumption. To recover the other parameters of the MWTP function,
e regress these interceps on income, race, and market dummies. The

esults of this Horizontal approach are repeated in Table 7 . 
A more nuanced version of this inversion approach is the one de-

cribed in Bajari and Benkard (2005) where a non-linear utility function
s specified that yields a constant, but non-zero elasticity of demand, e.g.,
 Cobb-Douglas utility function that yields a constant elasticity of −1 .
ntuitively, if the researcher is willing to assume a constant elasticity
f −1 for the MWTP function, then knowing a single point along this
unction would allow the researcher to recover the entire function. We
mplement a version of this Unitary-Elasticity approach with our data
y specifying utility as: 

 = 𝛼0 ,𝑡 + 𝛼1 ,𝑖,𝑡 log ( 𝜁 − 𝑍 𝑖,𝑡 ) + 𝑔( 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ) + 

(
𝐼 𝑖,𝑡 − 𝑃 ( 𝑍 𝑖,𝑡 , 𝐻 𝑖,𝑡 , 𝜖𝑖,𝑡 ; 𝛽𝑡 ) 

)
(21)

n this case, the argument of the utility function is now a measure of
afety, ( 𝜁 − 𝑍 𝑖,𝑡 ), where 𝜁 is 1.01 times the maximum observed violent
rime level. This allows the MWTP function to be downward sloping in
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Table 7 

WTP for non-marginal changes in violent crime using preference-inversion meth- 

ods. 

Buyers with reductions Buyers with increases 

( 𝑛 = 24 , 791 ) ( 𝑛 = 12 , 900 ) 

Average 25th % 75th % Average 25th % 75th % 

WTP WTP WTP WTP WTP WTP 

Horizontal 858 308 1099 -1194 -1537 -282 

Unitary elasticity 828 306 1075 -1298 -1586 -283 

These are estimates of willingness to pay (in year-2000 dollars) for the observed 

1999 changes in crime. Horizontal estimates use the inversion procedure for a 

model with a horizontal MWTP function. Unitary Elasticity estimates use the in- 

version procedure for the model presented in Eq. 21 . 
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he case of a “good ” like safety and yields a constant elasticity of −1
ith respect to safety in the following MWTP function: 52 

𝑊 𝑇 𝑃 = 

𝛼1 ,𝑖,𝑡 
( 𝜁 − 𝑍 𝑖,𝑡 ) 

(22)

y rearranging the first-order condition, one can then perform the fol-
owing preference inversion to recover ̂𝛼1 ,𝑖,𝑡 : 

̂1 ,𝑖,𝑡 = 𝑃 ′( 𝑍 𝑖,𝑡 ; 𝛽𝑡 )( 𝜁 − 𝑍 𝑖,𝑡 ) (23)

esults of this Unitary-Elasticity specification may be found in
able 7 and, while the results reflect a downward sloping MWTP func-
ion, they are very similar to the Horizontal case. 53 

. Conclusion 

Researchers regularly ascribe downward-sloping demand curves to
ouseholds for goods ranging from breakfast cereals to BMWs. In fact,
ecovering the price elasticity of demand for such goods constitutes one
f the main activities undertaken by applied microeconomists. How-
ver, because of the difficult endogeneity problems associated with the
ecovery of the MWTP function using the hedonic technique, the flex-
bility to estimate downward sloping demand curves has generally not
een applied to household demand for local public goods and ameni-
ies. Instead, applications of the hedonic method have tended to focus
nly on the first-stage hedonic price regression; recovering parameters
hat only yield valid welfare estimates for marginal policies. In order to
roperly evaluate the welfare effects associated with larger policies, the
esearcher must recover the structural parameters of the MWTP func-
ion. In this paper, we show how easy the empirical implementation
f a parametric model can be, following recent advances in the litera-
ure. We show that in this framework, the approach is computationally
ight, easy to implement, and requires no more in terms of data than the
tandard Rosen estimation approach. In fact, the maximum-likelihood
stimator can be simplified to a search over a single parameter. 

Using this maximum-likelihood approach and data on violent crime
ates in California’s Bay Area, we find that properly accounting for the
52 Working directly with Z , which is a “bad ”, will yield an upward sloping MWTP func- 

ion. By using a measure of safety, the MWTP function for Z is allowed to be both negative 

nd downward sloping. In Table 7 , the Horizontal and unitary-elasticity models yield sim- 

lar results. We chose the smallest possible value of 𝜁 and note that if larger values of 𝜁 are 

hosen, the results become even more similar as larger values of 𝜁 dictate flatter MWTP 

lopes. See Bishop and Timmins (2018) for a similar discussion. 
53 The model that is specified in Section 5.2.2 gives rise to a MWTP function with con- 

tant elasticity 𝛼2 . One could also implement a preference inversion by imposing a value 

or this constant elasticity (versus estimating the constant elasticity coefficient as we do in 

ection 5.2.2 ). One possible choice would be the assumption 𝛼2 = 0 . This is equivalent to 

ssuming a zero slope for the MWTP function and yields the Horizontal results shown in 

able 7 . Another choice would be to impose unitary elasticity and assume that 𝛼2 = 1 . (As 

e are working with a “bad ” in the fourth quadrant, this elasticity is positive.) However, 

his arbitrary choice is somewhat hard to justify as the unitary elasticity comes solely from 

pecifying a linear function that must go through the origin. Nonetheless, the analogous 

esults to Table 7 with this restriction are 783, 303, 1033, -1402, -1726, and -288. 
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hape of the MWTP function has important implications for measuring
he welfare effects of non-marginal changes in violent crime. Consider-
ng the welfare effects associated with the observed one-year change in
rime for those households that purchased a house in 1999, we find that
lternative estimation procedures overstate benefits (for those house-
olds which experienced a decrease in violent crime) and understate
osts (for those households which experienced an increase in violent
rime) by over thirty percent. These differences are both statistically
nd economically significant and consequential for cost-benefit analy-
es of policies that may have large impacts on future crime rates. 

ppendix A. When a closed-form solution for Z exists 

In this subsection, we consider a special case of the general model
n which Z may be easily isolated in the first-order condition for utility
aximization. In this case, the estimation strategy is particularly trans-
arent. 

As this simple model specifies a linear gradient, identification re-
uires some cross-market restrictions, as has been well-established in
he literature. In this example, we impose that the slope of the MWTP
unction is constant across markets, while allowing the MWTP inter-
epts to vary. We additionally define the variance of 𝜈 to be common
cross markets. These cross-market restrictions are not generally nec-
ssary for identification but rather for this particular linear-quadratic
pecification. 

Continuing with the same utility function specified in (5) , we now
arameterize the hedonic price gradient as: 

 

′( 𝑍 𝑖,𝑗 ; 𝛽) = 𝛽1 ,𝑗 + 𝛽2 ,𝑗 𝑍 𝑖,𝑗 (24)

We arrive at the following first-order condition for Z : 

1 ,𝑗 + 𝛼2 𝑍 𝑖,𝑗 + 𝛼3 ,𝑗 𝑋 𝑖 + 𝜈𝑖,𝑗 − 𝛽1 ,𝑗 − 𝛽2 ,𝑗 𝑍 𝑖,𝑗 = 0 (25)

hich can be rearranged such that the single endogenous variable, Z , is
solated on the left: 

 𝑖,𝑗 = 

( 

𝛼1 ,𝑗 − 𝛽1 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 

) 

+ 

( 

𝛼3 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 

) 

𝑋 𝑖 + 

( 

1 
𝛽2 ,𝑗 − 𝛼2 

) 

𝜈𝑖,𝑗 (26)

Eq. (26) describes how the consumption of the amenity Z varies
ith observable household characteristics, X , unobservable preference

hocks, 𝜈, and parameters of the hedonic price function, 𝛽. 
Using hats to indicate that 𝛽 is known from the first-stage estimation

f the hedonic price function and keeping the same distributional as-
umption that 𝜈 ∼N (0, 𝜎2 ), Z i, j is then distributed normally with mean

( 𝛼1 ,𝑗 − ̂𝛽1 ,𝑗 
𝛽2 ,𝑗 − 𝛼2 

) + ( 𝛼3 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 
) 𝑋 𝑖 )) and standard deviation ( 𝜎

𝛽2 ,𝑗 − 𝛼2 
) . This reveals a

traightforward maximum-likelihood approach for estimating the utility
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Table 8 

Monte Carlo results (common 𝛼1 ). ( “true ” parameter values: 𝛼1 = 3 , 𝛼2 = −0 . 3 , 𝜎 = 0 . 5 ). 

mean( 𝛼1 ) mean( 𝛼2 ) mean( 𝜎) std( 𝛼1 ) std( 𝛼2 ) std( 𝜎) 

𝑗 = 2 , 𝛾1 = 1 , 𝛾2 = 0 3.0035 -0.3036 0.5015 0.0709 0.0706 0.0357 

𝑗 = 2 , 𝛾1 = 2 , 𝛾2 = 0 3.0004 -0.3006 0.5000 0.0354 0.0347 0.0182 

𝑗 = 2 , 𝛾1 = 3 , 𝛾2 = 0 3.0000 -0.3001 0.4998 0.0241 0.0231 0.0127 

𝑗 = 2 , 𝛾1 = 𝛾2 = 1 3.0015 -0.3016 0.5005 0.0460 0.0452 0.0233 

𝑗 = 2 , 𝛾1 = 𝛾2 = 2 3.0002 -0.3003 0.4999 0.0240 0.0222 0.0124 

𝑗 = 2 , 𝛾1 = 𝛾2 = 3 3.0000 -0.3001 0.4997 0.0171 0.0146 0.0091 

𝑗 = 5 , 𝛾1 = 𝛾2 = 1 3.0002 -0.3003 0.4999 0.0342 0.0331 0.0175 

𝑗 = 5 , 𝛾1 = 𝛾2 = 2 2.9998 -0.2999 0.4997 0.0182 0.0159 0.0097 

𝑗 = 5 , 𝛾1 = 𝛾2 = 3 2.9998 -0.2999 0.4997 0.0133 0.0100 0.0074 

𝑗 = 10 , 𝛾1 = 𝛾2 = 1 3.0002 -0.3003 0.4998 0.0309 0.0296 0.0158 

𝑗 = 10 , 𝛾1 = 𝛾2 = 2 2.9998 -0.2999 0.4997 0.0166 0.0141 0.0089 

𝑗 = 10 , 𝛾1 = 𝛾2 = 3 2.9998 -0.2999 0.4997 0.0123 0.0087 0.0069 

𝑗 = 50 , 𝛾1 = 𝛾2 = 1 3.0000 -0.3001 0.4998 0.0285 0.0271 0.0147 

𝑗 = 50 , 𝛾1 = 𝛾2 = 2 2.9998 -0.2999 0.4996 0.0155 0.0128 0.0084 

𝑗 = 50 , 𝛾1 = 𝛾2 = 3 2.9998 -0.2999 0.4996 0.0117 0.0078 0.0066 
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arameters. 54 This likelihood is given by: 55 

Π𝑁 

𝑖 =1 𝓁 ( 𝛼, 𝜎; 𝑍 𝑖,𝑗 , 𝑋 𝑖,𝑗 ) 

where 𝓁 ( 𝛼, 𝜎; 𝑍 𝑖,𝑗 , 𝑋 𝑖,𝑗 ) 

= 

1 
( 𝜎

𝛽2 ,𝑗 − 𝛼2 
) 
√
2 𝜋

exp 

×
⎧ ⎪ ⎨ ⎪ ⎩ − 

1 
2( 𝜎

𝛽2 ,𝑗 − 𝛼2 
) 2 

( 

𝑍 𝑖,𝑗 − 

( ( 

𝛼1 ,𝑗 − 𝛽1 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 

) 

+ 

( 

𝛼3 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 

) 

𝑋 𝑖,𝑗 

) ) 2 ⎫ ⎪ ⎬ ⎪ ⎭ 
(27) 

Finally, it is worth considering the very special case of the para-
etric model when estimation is particularly straightforward: the case
here the structural parameters may be recovered using least-squares
stimation. As an example, consider the specification above with exactly
wo markets. In this case, Eq. (26) may be estimated using an indirect
east squares (ILS) procedure. With the same number of equations as un-
nown structural parameters, 56 it becomes a simple matter to recover
he structural parameters { 𝛼1, j , 𝛼2 , 𝛼3, j , 𝜎} from the reduced-form pa-
ameters { 𝜃0, j , 𝜃1, j , 𝜎u, j } which are recovered using OLS for each mar-
et j . The unique mapping between the two sets is given by: 

 𝑖,𝑗 = ( 
𝛼1 ,𝑗 − 𝛽1 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 
) 

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜃0 ,𝑗 

+ ( 
𝛼3 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 
) 

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜃1 ,𝑗 

𝑋 𝑖 + ( 1 
𝛽2 ,𝑗 − 𝛼2 

) 𝜈𝑖,𝑗 

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑢 𝑖,𝑗 

(28)

here 𝜎u, j is the market-specific standard deviation of u i, j . 

ppendix B. Monte Carlo evidence 

In this Appendix, we provide Monte Carlo evidence on the perfor-
ance of this estimation approach for the model described in Appendix
. We begin with Monte Carlo simulations of the simplest two-market
odel. From this starting point, we increase the number of markets and

ncrease the level of heterogeneity in both the market-specific gradient
54 In fact, Kahn and Lang (1988) suggest estimating a restricted version of Eq. (26) via 

on-linear least squares. However, their estimator requires the strong assumption that all 

f the utility parameters are constant across markets. Additionally, their proposed estima- 

or is only applicable for the subset of cases where a closed-form solution for Z exists and 

oes not generalize to the cases we present in Section 2.1 . 
55 As this model is simply a special case of the model discussed in Section 2.1 , the ap- 

roach of concentrating the likelihood to facilitate a single-parameter search still applies. 
56 Let L denote the number of elements in X and J denote the number of markets. The 

educed-form estimation returns 
(
𝐽 ∗ ( 𝐿 + 1) + 𝐽 

)
parameters. The number of structural 

arameters in Eq. (26) is 
(
𝐽 ∗ ( 𝐿 + 1) + 2 

)
. Therefore, for 𝐽 = 1 , this model is underiden- 

ified (given the linear price gradient). For 𝐽 = 2 , it is exactly identified. For J ≥ 3, the 

odel is overidentified. 
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ntercepts and slopes. Finally, we allow the MWTP intercept to vary by
arket. 

For the first simulations, the hedonic gradient is given by: 

 

′( 𝑍 𝑖,𝑗 ; 𝛽) = 𝛽1 ,𝑗 + 𝛽2 ,𝑗 𝑍 𝑖,𝑗 (29)

nd the first-order condition for utility maximization is given by: 

1 + 𝛼2 𝑍 𝑖,𝑗 + 𝜈𝑖,𝑗 − 𝑃 ′( 𝑍 𝑖,𝑗 ; 𝛽) = 0 (30)

ielding the MWTP function: 

 

′( 𝑍 𝑖,𝑗 ; 𝛽) = 𝛼1 + 𝛼2 𝑍 𝑖,𝑗 + 𝜈𝑖,𝑗 (31)

nd optimal consumption of Z : 

 𝑖,𝑗 = ( 
𝛼1 − 𝛽1 ,𝑗 

𝛽2 ,𝑗 − 𝛼2 
) + ( 1 

𝛽2 ,𝑗 − 𝛼2 
) 𝜈𝑖,𝑗 (32)

We allow the number of markets to take on the following values:
 = {2 , 5 , 10 , 50} . We specify that 𝛽1 ,𝑗 = 2 + 𝜂1 and 𝛽2 ,𝑗 = 0 . 7 + 𝜂2 where

1 ∼ 𝛾1 ∗ 𝑈 (−0 . 3 , 0 . 3) and 𝜂2 ∼ 𝛾2 ∗ 𝑈 (−0 . 15 , 0 . 15) . 𝛾 is allowed to take
n the following values: 𝛾1 = {1 , 2 , 3} and 𝛾2 = {0 , 1 , 2 , 3} . 

In all cases, we keep the total number of observations fixed at
 = 5 , 000 with observations per market given by 𝑛 

𝑗 
. The number of

onte Carlo repetitions per experiment is 1,000. We set the structural
arameters to the following “true ” values: 𝛼1 = 3 , 𝛼2 = − 0 . 3 , and 𝜎= 0 . 5 .

The results in Table 8 show that there is very little bias in the finite
amples, even in the case of only two markets with limited information
oming from each market. The standard deviations of the estimated pa-
ameters are small relative to the parameters and, more importantly, the
fficiency of the estimator is increasing in both market size and level of
radient heterogeneity. 

For comparison, we first run the same set of Monte Carlo experiments
sing the traditional two-step Rosen framework. Results are presented in
able 9 . As expected, the estimator performs poorly, particularly when

t comes to recovering the slope of the MWTP function, 𝛼2 . In all cases
even with 50 markets and maximum gradient heterogeneity across mar-
ets), both the MWTP intercept ( 𝛼1 ) and the standard deviation of the
reference shock ( 𝜎) are significantly biased downwards. In addition,
he MWTP slope is always biased upwards (as expected); in all but two
f the experiments, the mean value of the slope takes on a positive value
implying an upward sloping demand curve). 

Finally, we run a set of experiments where the MWTP intercept, 𝛼1 ,
s allowed to vary across markets. We specify that 𝛼1, j ∼U (2, 4), while
eeping 𝛼2 = −0 . 3 and 𝜎 = 0 . 5 . Note that in this specification, we require
eterogeneity in the slope of the gradients across markets and do not es-
imate the cases where 𝛾2 = 0 . Our estimator performs well in each case,
ncluding the case with only two markets and minimum gradient hetero-
eneity. The results from these experiments are presented in Table 10 . 
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Table 9 

Monte Carlo results (common 𝛼1 ) - Rosen approach. ( “true ” parameter values: 𝛼1 = 3 , 
𝛼2 = −0 . 3 , 𝜎 = 0 . 5 ). 

mean( 𝛼1 ) mean( 𝛼2 ) mean( 𝜎) std( 𝛼1 ) std( 𝛼2 ) std( 𝜎) 

𝑗 = 2 , 𝛾1 = 1 , 𝛾2 = 0 2.0385 0.6615 0.0980 0.0026 0.0026 0.0003 

𝑗 = 2 , 𝛾1 = 2 , 𝛾2 = 0 2.1381 0.5619 0.1857 0.0044 0.0042 0.0009 

𝑗 = 2 , 𝛾1 = 3 , 𝛾2 = 0 2.2649 0.4350 0.2572 0.0053 0.0049 0.0017 

𝑗 = 2 , 𝛾1 = 𝛾2 = 1 2.0802 0.6129 0.1455 0.0035 0.0036 0.0007 

𝑗 = 2 , 𝛾1 = 𝛾2 = 2 2.2557 0.4224 0.2598 0.0055 0.0049 0.0019 

𝑗 = 2 , 𝛾1 = 𝛾2 = 3 2.4299 0.2332 0.3369 0.0068 0.0050 0.0029 

𝑗 = 5 , 𝛾1 = 𝛾2 = 1 2.1492 0.5381 0.1984 0.0048 0.0047 0.0012 

𝑗 = 5 , 𝛾1 = 𝛾2 = 2 2.4131 0.2525 0.3299 0.0068 0.0052 0.0028 

𝑗 = 5 , 𝛾1 = 𝛾2 = 3 2.6150 0.0358 0.4022 0.0079 0.0047 0.0038 

𝑗 = 10 , 𝛾1 = 𝛾2 = 1 2.1774 0.5076 0.2163 0.0050 0.0049 0.0014 

𝑗 = 10 , 𝛾1 = 𝛾2 = 2 2.4654 0.1963 0.3501 0.0071 0.0051 0.0031 

𝑗 = 10 , 𝛾1 = 𝛾2 = 3 2.6669 -0.0187 0.4185 0.0081 0.0045 0.0040 

𝑗 = 50 , 𝛾1 = 𝛾2 = 1 2.2022 0.4807 0.2309 0.0053 0.0050 0.0015 

𝑗 = 50 , 𝛾1 = 𝛾2 = 2 2.5067 0.1519 0.3652 0.0073 0.0050 0.0033 

𝑗 = 50 , 𝛾1 = 𝛾2 = 3 2.7046 -0.0582 0.4299 0.0082 0.0043 0.0042 

Table 10 

Monte Carlo results (market-specific 𝛼1, j ). ( “true ” parameter 

values: 𝛼2 = −0 . 3 , 𝜎 = 0 . 5 ). 

mean( 𝛼2 ) mean( 𝜎) std( 𝛼2 ) std( 𝜎) 

𝑗 = 2 , 𝛾1 = 𝛾2 = 1 -0.3531 0.5263 0.2406 0.1209 

𝑗 = 2 , 𝛾1 = 𝛾2 = 2 -0.3139 0.5066 0.1028 0.0524 

𝑗 = 2 , 𝛾1 = 𝛾2 = 3 -0.3068 0.5031 0.0662 0.0345 

𝑗 = 5 , 𝛾1 = 𝛾2 = 1 -0.3277 0.5134 0.1535 0.0775 

𝑗 = 5 , 𝛾1 = 𝛾2 = 2 -0.3084 0.5037 0.0693 0.0359 

𝑗 = 5 , 𝛾1 = 𝛾2 = 3 -0.3045 0.5018 0.0431 0.0233 

𝑗 = 10 , 𝛾1 = 𝛾2 = 1 -0.3221 0.5103 0.1335 0.0675 

𝑗 = 10 , 𝛾1 = 𝛾2 = 2 -0.3068 0.5027 0.0606 0.0316 

𝑗 = 10 , 𝛾1 = 𝛾2 = 3 -0.3036 0.5012 0.0370 0.0204 

𝑗 = 50 , 𝛾1 = 𝛾2 = 1 -0.3193 0.5069 0.1220 0.0616 

𝑗 = 50 , 𝛾1 = 𝛾2 = 2 -0.3061 0.5003 0.0554 0.0290 

𝑗 = 50 , 𝛾1 = 𝛾2 = 3 -0.3033 0.4990 0.0333 0.0186 

Table 11 

WTP for non-marginal changes in violent crime. 

Buyers with reductions Buyers with increases 

( 𝑛 = 24 , 791 ) ( 𝑛 = 12 , 900 ) 

Average 25th % 75th % Average 25th % 75th % 

WTP WTP WTP WTP WTP WTP 

LB 652 294 917 -1710 -1828 -290 

GMM 730 300 992 -1499 -1712 -287 

These are estimates of willingness to pay (in dollars) for the observed 

1999 changes in crime. Welfare estimates are constructed using GMM 

estimates of the model presented in Eq. 5 . 
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57 In these estimations, we use the bandwidth of 2.15 times the standard deviation of 
ppendix C. Robinson’s two step estimation details 

In order to obtain a consistent estimate of 𝛽, we first take the expec-
ation of Eq. (12) with respect to Z , 

[ 𝑃 𝑖,𝑡 |𝑍 𝑖,𝑡 ] = 𝐸[ 𝐻 𝑖,𝑡 |𝑍 𝑖,𝑡 ] ′𝛽𝐻 

𝑡 + 𝑓 𝑡 ( 𝑍 𝑖,𝑡 ; 𝛽𝑡 ) + 𝐸[ 𝜖𝑖,𝑡 |𝑍 𝑖,𝑡 ] , (33)

nd subtract it from Eq. (12) . This allows us to write: 

 ̃𝑖,𝑡 = 𝐻̃ 

′
𝑖,𝑡 𝛽

𝐻 

𝑡 + 𝜖𝑖,𝑡 where: (34)

 ̃𝑖,𝑡 = 𝑃 𝑖,𝑡 − 𝐸[ 𝑃 𝑖,𝑡 |𝑍 𝑖,𝑡 ] and 𝐻̃ 𝑖,𝑡 = 𝐻 𝑖,𝑡 − 𝐸[ 𝐻 𝑖,𝑡 |𝑍 𝑖,𝑡 ] 

Robinson (1988) shows that a consistent estimate of 𝛽 is obtained
hen estimating Eq. (34) using Ordinary Least Squares in the second

tage of his “two-step ” method. For the first stage of the Robinson
ethod, we non-parametrically regress P and H on Z , retain the fitted
c

i

82 
alues E [ P | Z ] and E [ H | Z ], and use them to create 𝑃 and 𝐻̃ . In practice,
e specify these expectations as being locally quadratic and estimate

hem using Weighted Least Squares with weights given by a Gaussian
ernel. 57 

ppendix D. Results from the first stage estimation with 

onfidence intervals 

Figs. 9, 10 , and 11 show the year-specific price functions, price gra-
ients, and second-derivatives of the price functions, respectively. Each
lot includes a 99% confidence interval created using 250 bootstrap it-
rations. 

ppendix E. GMM estimation 

We also estimate the model described in Section 2.1 via Generalized
ethod of Moments (GMM). The standard tradeoffs exist between Maxi-
um Likelihood (MLE) and GMM; MLE is more efficient, but GMM does
ot require a distributional assumption on 𝜈. We note that for our model,
he computational burden for MLE is considerably lower as, under nor-
ality, it is straightforward to concentrate the likelihood and simplify

he optimization to a single-parameter search. 
To implement GMM, we solve for the preference shock, 𝜈, using

q. 8 . Moments can then be constructed based on the discussion in
ection 2.2 . In practice, we assume that 𝐸[ 𝑊 1 𝜈] = 0 and 𝐸[ 𝑊 2 ( 𝜈2 − 𝜎)] =
 . W 1 includes the set of market dummies, X, X 

2 , X 

3 , and interactions
mong the elements of X , as well as these elements interacted with the
arket dummies. W 2 includes the set of market dummies. We estimate

he parameters, { 𝛼, 𝜎}, by minimizing a criterion function consisting of
 weighted sum of the empirical analogues of these moments. An effi-
ient weight matrix is chosen using Continuous Updating Efficient GMM
s discussed in Hansen et al. (1996) . 

Welfare estimates for the linear MWTP model using the GMM esti-
ation approach are shown in Table 11 where we also repeat our base-

ine results for comparison. Overall, the results are reasonably similar
o our baseline results for the 25 th and 75 th percentiles, but somewhat
ifferent for more extreme changes in crime as seen in the mean wel-
are estimates. This reflects the fact that GMM estimates a flatter MWTP
rime. This is the same bandwidth used in the estimation of Eq. (13) where the regressor 

s also the rate of violent crime. 
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